Lecture plan, INF-MAT5340, Spring 2011

The table below gives the plan for the  lectures in INF-MAT5340, Spring 2011. All lectures take place in room 1206 in Kristen Nygaards building (Ifi1). To hand in an assignment, send it as an attachment to Bart?omiej Siwek (bartloms@ifi.uio.no) or hand it in manually at his office (room 517, Niels Henrik Abels hus). 

There will be a total of 5 assignments. In order to take the exam you must pass at least 4 of these, and the Assignments 1 and 4 must be passed.

Please note that this plan will almost certainly be changed!

 

 

 

Date

Teacher

Topic

Assignments

24.01

Tom Lyche

Introduction. Lagrange interpolation, Neville-Aitken scheme,  sections 1.1-1.3 

 

28.01

Tom Lyche

Bezier curves, spline curves, sections 1.4-1.7 

 

31.01

Knut M?rken

B-splines: basic properties, sections 2.1-2.2 

 

04.02

Tom Lyche 

Matrix representation, evaluation, sections 2.3-2.4 

 

07.02

Knut M?rken

Linear independence, differentiation, sections 3.1-3.2 

 

11.02

Knut M?rken

Smoothness, integral of a B-spline, the Curry-Schoenberg theorem, sections 3.2.4, 3.3 

 

14.02

Knut M?rken

Piecewise linear interpolation.  variation diminishing spline approximation section 5.1,5.2 

Hand in Assignment 1: 1.3, 1.4, 1.5, 1.7 

18.02

Tom Lyche

Piecewise cubic Hermite interpolation,  general spline interpolation, section 5.3, 5.5 

 

21.02

 

Winter holiday

 

25.02

 

Winter holiday

 

28.02

Bart?omiej Siwek

 

 Discuss Assignment 1 

 

Hand in Assignment 2: 2.2, 2.6, 2.11, 2.12, 2.17, 2.19 

04.03

Knut M?rken

Cubic spline interpolation, Least squares with splines, sections 5.4,5.6,         

 

07.03

Bart?omiej Siwek

 

  Discuss Assignment 2

11.03

Tom Lyche 

Parametric curves, tensor-product spline surfaces, sections 6.1, 6.2, 7.1

 

14.03

Tom Lyche

Tensor-product approximation methods, 3D,  surfaces, sections 7.2, 7.4, 7.5

 Hand in Assignment 3

18.03

Knut M?rken

 Quasi-interpolation, sections 8.1-8.5 

 

21.03

Bart?omiej Siwek

 

Discuss Assignment 3

25.03

Knut M?rken

 Quasi-interpolation, sections 8.1-8.5 

 

28.03

Tom Lyche

 Approximation theory, sections 9.1-9.2

 

01.04

Tom Lyche

 Stability section 9.3

 

04.04

Tom Lyche

Knot insertion, Oslo algorithm, sections 4.1-4.2 

Hand in Assignment 4 (data).

08.04

Knut M?rken

Blossoming, section 4.3 

 

11.04

Bart?omiej Siwek

 

Discuss Assignment 4

15.04

Knut M?rken

Inserting one knot, bounding sign changes,and  convergence of control polygon, sections 4.4-4.5, 9.4 

 

18.04

 

Easter holiday

 

22.04

 

Easter holiday

 

25.04

 

Easter holiday

 

29.04

Knut M?rken

Bounding the number of zeros, section 10.1

 

Hand in Assignment 5

02.05

 

Lecture cancelled

 

06.05

Bart?omiej Siwek

 

Discuss Assignment 5

09.05

Knut M?rken

Uniqueness of interpolation, section 10.2; total positivity, section 10.3

 

13.05

Knut M?rken

Computing zeros of splines

 

       

 

By Tom Lyche and Knut M?rken
Published Feb. 8, 2011 1:53 PM - Last modified Feb. 7, 2020 4:00 PM