Dato | Undervises av | Sted | Tema | Kommentarer / ressurser |
16.11.2006 | ? | ? | 7.3? | Spectral family and spectrum of self-adjoint operators. (7.4 Simple spectrum, will not be included in the pensum) Exercises: Chap. 7: 1, 2 (, 3)? |
14.11.2006 | ? | ? | 7.2, 7.3? | Hilbert?s theorem. Spectral decomposition of selfadjoint (bounded) operators.? |
09.11.2006 | ? | ? | 7.1, 7.2? | Spectral decomposition. Spectral integral. Hilbert?s theorem.Exercises: 7.04, page 107? |
07.11.2006 | ? | ? | 7.0, 6.4? | Functional calculus. Orthoprojections.? |
02.11.2006 | ? | ? | 6.3, 6.4a)? | Ordering. Projections in linear spaces.Exercises: Chap.6: 7, 11, 12? |
31.10.2006 | ? | ? | 6.3? | Ordering in the space of self-adjoint operators.? |
26.10.2006 | ? | ? | 6.2c), 6.3 ? | The second Hilbert-Schmidt Theorem. (Ordering in the space of self-adjoint operators.)Exercises: Chap.6: 5, and in addition: Exercise. Let K be an integral operator on H=L_2[a,b] with a continuous kernel function k. Assume that K has a Riemann square-integrable eigenfunction f in H with a nonzero eigenvalue. Prove that(a) f is continuous(b) If k has continuous partial derivatives of order 1 (respectively n) then f is continuously differentiable (resp. n times continuously differentiable).? |
24.10.2006 | ? | ? | 6.2 b, c ? | The Minimax principle. The second Hilbert-Schmidt theorem. ? |
19.10.2006 | ? | ? | 6.2a? | The first Hilbert-Schmidt theorem.Exercises: Chap. 6: 2, 3? |
17.10.2006 | ? | ? | 6.1, 6.2a? | Spectral theory for compact self-adjoint operators.? |
12.10.2006 | ? | ? | 5.2, 4.4, 6.1? | Fredholm?s theory of compact operators. Adjoint operators.Exercises: Chap. 4: 23; Chap.5: 9, 11? |
10.10.2006 | ? | ? | 5.2? | Compact operators. Fredholm?s theory.? |
05.10.2006 | ? | ? | 5.2? | Continuous spectrum. Compact operators.Exercises: Chap. 5: 3, 4, 5, and in addition:Let X and Y be normed spaces, Y complete, D a dense subspace of X. Assume A : D -->Y is a bounded linear operator. Prove that A has an extension to an operator in L(X,Y) with the same norm as A. Also show that this extension of A is unique.? |
03.10.2006 | ? | ? | 4.7, 5.1, 5.2? | Invertible operators. The spectral theory of compact operators: Point spectrum.? |
28.09.2006 | ? | ? | 4.6? | K(X,Y) is closed in L(X,Y) : completion of proof (there is a gap at the end of the argument given in the book). Different types of operator convergences. If there is time: A in L(X,Y) compact implies the adjoint (dual operator) A* is compact.Exercises: Chap. 4: 8, 12, 20? |
26.09.2006 | ? | ? | 4.4, 4.5a? | Approximation of compact operators by operators of finite rank. Dual operators.? |
21.09.2006 | ? | ? | 4.5? | Finite rank operators.Exercises: Chap. 4: 1, 3, 15, (19: uses exercise 8 of Chap.3)? |
19.09.2006 | ? | ? | 4.2, 4.3a? | Examples of bounded linear operators. Precompact sets. Compact operators.? |
14.09.2006 | ? | ? | 3.1, 4.1? | Corollaries to the Hahn-Banach theorem. Bounded linear operators.Exercises: Chap. 2: 24, Chap. 3: 5? |
12.09.2006 | ? | ? | 3.1, 3.2? | The Hahn-Banach theorem. Examples of dual spaces.? |
07.09.2006 | ? | ? | 2.2 c, 2.3 a-c, 3.2? | Linear functionals. Dual spaces. Examples.Exercises: Chap. 2: 10, 11, 12, 13, 29? |
05.09.2006 | ? | ? | 2.1 e, 2.2 a, b, c? | Application of Parseval?s identity to L_2[a,b]. Convex sets. Orthogonal projections, orthogonal complements.? |
31.08.2006 | ? | ? | 2.1 e), 2.2 b)? | Anvendelse av Parsevals identitet p? L_2[a,b]. Konvekse mengder.Oppgaver. Kap.1: 18, 20Kap.2: 1, 4, 5, 8 c).? |
29.08.2006 | ? | ? | 2.1 b)- 2.1 e)? | Bessels ulikhet og Parsevals identitet. Eksistens av ortonormal basis.? |
24.08.2006 | ? | ? | 1.5, 2.1 a)? | Komplettering av normerte rom. Hilbertrom.Oppgaver. Kap.1: 1, 11, 12, 22, 23,24.Dessuten:(I) Vis at rommet Rp[a,b] (side 16) ikke er et line?rt rom. Fors?k ? omdefinere Rp[a,b] slik at det blir line?rt (og fremdeles inneholder C[a,b]).? |
22.08.2006 | Terje Sund? | B 70? | 1.1 - 1.4. ? | Normerte rom. Kvotientrom.? |
Undervisningsplan
Publisert 14. aug. 2006 16:26
- Sist endret 14. nov. 2006 14:40