Beskjeder
Siste gang (19. og 20. feb.) diskuterte vi en metode til beregning av sannsynligheter for treffetider. Dessuten ble vi kjent med den sterke Markovegenskapen av Markovkjeder som har viktige anvendelser i finans-, forsikringsmatematikk og fysikk (kap. 3.3 i manus eller kap. 1.4 i Norris). Neste gang (26. og 27. feb.) vil vi befatte oss med rekurrente og transiente Markovtilstander (f.eks. i forbindelse med "random walks"). Se kap. 1.5 i Norris.
Regne?velser ("Exercises3") fremf?res 24. feb.
Last time (19./20. February), we discussed a method for calculating hitting time probabilities. Moreover, we got acquainted with the strong Markov property of Markov chains which has important applications in finance, insurance mathematics and physics (chapter 3.3 in the manuscript or chapter 1.4 in Norris). Next time (26./ 27 Feb.) we will deal with recurrent and transient Markov states (e.g. in the context of random walks). See chapter 1.5 in Norr...
Forrige gang (5. og 6. feb.) innf?rte vi Markovkjeder i diskret tid. Se kap.1.1 i boken til J. Norris. Deretter dr?ftet vi Markovegenskapen og (n-step-) overgangssannsynligheter av Markovkjeder (kap. 1.1 i Norris). Neste gang (12. og 13. feb.) skal vi diskutere karakterisering av Markovtilstander via kommuniserende klasser og beregne treffetid-sannsynligheter i forbindelse med "gambler`s ruin" og "birth-and-death-chains" (kap. 1.2 og 1.3 i Norris).
Det blir ikke (!) fellesundervisning p? mandag, 10. feb., men (!) p? mandag, 17. feb.!
Last time (Feb. 5 and 6), we introduced Markov chains in discrete time. See chapter 1.1 in the book by J. Norris. Then we discussed the Markov property and n-step transition probabilities of Markov chains (chap. 1.1 in Norris).
Next time (Feb. 12 and 13) we will discuss characterization of Markov states via communicating classes and compute hitting time probabilities in conne...
Det er planlagt ? bli ferdig med kr?sjkurset i sannsynlighetsteori p? onsdag, 5. feb. Etterp? (5./6. feb.) skal vi begynne med kap. 1 i boken til Norris og studere Markovkjeder i diskret tid.
Vi skal ha gruppetime (fremf?ring av en del av oppgaver ifm "Exercises1") p? mandag (3. feb.).
We are supposed to finish our crash course on probability theory on Wednesday, 5. Feb. Then we will continue with ch. 1 in the book of Norris and study discrete-time Markov chains (5./6. Feb.).
Parts of "Exercises1" will be presented on Monday, 3. Feb. in connection with "gruppetime".
Vi startet opp kurset (23. Jan.) med en generell innf?ring i teorien av stokastiske prosesser og deres anvendelser. Neste gang (29./30. jan.) skal vi fortsette med et crashkurs i sannsynlighetsregning og repitere grunnleggende begrep og resultater (feks. stokastiske variabler, (betinget) forventningsverdi osv.).
Det blir ingen (!) fremf?ring av regne?velser/fellesundervisning p? mandag, 27. jan.!
Her finner dere manuset og regneoppgaver:
https://www-adm.uio.no/studier/emner/matnat/math/STK2130/v25/forelesningsmateriale/?vrtx=admin
We started our course (23. Jan.) with a general discussion of the theory of stochastic processes and its applications. Next week (29./30. Jan.) we will continue with a crash course on probability theory and recall some basic notions and results (concept of a random variable, (conditional) expected value etc.).
There will be no (!) presentation of exercises/"fellesundervisning" on Monday, 27...
Vi starter opp med undervisning p? torsdag, 23. jan., 10:15-12:00, Vilhelm Bjerknes' Hus, Aud. 5.
Det blir ingen (!) undervisning p? mandag, 20. jan. og onsdag, 22. jan.
We are supposed to start with our course on Thursday, 23. Jan., 10:15-12:00, Vilhelm Bjerknes' Hus, Aud. 5.
There will be no "fellesundervisning" on Monday, 20. Jan. and no lesson on Wednesday, 22. Jan.
Vi vil bruke f?lgende b?ker i dette kurset:
1. J. R. Norris: Markov Chains. Cambridge University Press (1998).
ISBN-10: 0521633966
2. R. Durrett: Essentials of Stochastic Processes. Springer (2016)
Pensum:
1. Generell innf?ring i teori av Markovprosesser som skal gi oversikt over ulike anvendelser p? biologi og finansmatematikk.
2. Kr?sjkurs i sannsynlighetsteori:
Definisjon av grunnleggende begrep som f.eks. sannsynlighetsrom/-variabel, betinget forventningsverdi osv. (se feks Appendix i boken til R. Durrett)
3. Markovkjeder i diskret tid
3.1 Grunnlegggende konsepter og definisjoner:
Definisjon av Markovkjeder i diskret tid, overgangssannsynligheter osv. (kap. 1.1 i J. Norris eller kap. 1.2 i R. Durrett).
3.2 Hitting times (treffetider) og ab...