English version of this page

MIRAGE - Et integrert AI-basert system for avansert musikkanalyse (avsluttet)

Et hovedm?l i prosjektet er ? videreutvikle datamaskiners evne til ? lytte til og forst? musikk. Dette vil n?dvendiggj?re utvikling av banebrytende teknologi som ogs? vil kunne hjelpe menneskelige lyttere til ? bedre forst? og verdsette musikk. En viktig anvendelse av denne teknologien vil v?re ? gj?re musikk mer tilgjengelig og engasjerende.

Bildet kan inneholde: himmel, strand, tre, horisont, farger og nyanser.

KOMMENDE: MIRAGE Avslutningsseminar: Digitalisering og datamaskinst?ttet musikkanalyse av folkemusikk – Apr. 26, Nasjonalbiblioteket, Oslo

Om prosjektet

Vi skal videreutvikle v?rt datateknologiske rammeverk slik at vi kan hente ut store mengder informasjon om musikkens elementer som klang, toner, rytme, og form. Musikk kan ofte v?re kompleks, og for ? kunne trekke ut mening fra denne subtile kunstformen, m? flere musikkvitenskapelige elementer innarbeides i det datateknologiske rammeverket. Gjentakelser er ofte et viktig element i musikk; motiver kan bli gjentatt mange ganger i l?pet av et musikkverk, og flere musikkverk kan ligne hverandre slik at de danner s?regne stilkategorier. ? kunne avdekke gjentakelser er krevende men ogs? helt avgj?rende for prosjektet. Prosjektet vil ta for seg et stort utvalg musikalske stilarter fra tradisjonsmusikk, klassisk musikk og popul?rmusikk, akustisk s? vel som elektronisk, og fra ulike kulturer. Denne omfattende kartleggingen av musikkelementer ved hjelp av disse dataredskapene, vil ogs? bli brukt til ? utforske lytteres affektive og kroppslige musikk-relaterte forestillinger.

Foruten ? bidra til musikkvitenskap, musikkteknologi og musikkognisjon, vil dette prosjektet ogs? levere ny teknologi som kan brukes av et bredt publikum. Formidling av musikk ved hjelp a musikkvideoer har stort potensiale, s?rlig n?r det lydlige og det visuelle er godt integrert, og prosjektets teknologier vil gj?re det mulig ? generere interessante videoer fra mange forskjellige musikktyper. Vi tror slike maskingenererte visualiseringer av lyd-data vil kunne berike musikkopplevelsen og gj?re musikk mer tilgjengelig. Slike visualiseringer av musikk kan ogs? lette s?k i store musikksamlinger og vil i tillegg kunne ha anvendelser i musikkterapi.

Prosjektet er et 澳门葡京手机版app下载 med musikkseksjonen p? Nasjonalbiblioteket, verdensledende innen digitalisering og tilgjengeliggj?ring av kulturar.

Mer informasjon p? engelsk her.

Publikasjoner

  • Bishop, Laura; H?ffding, Simon; Lartillot, Olivier Serge Gabriel & Laeng, Bruno (2023). Mental Effort and Expressive Interaction in Expert and Student String Quartet Performance. Music & Science. ISSN 2059-2043. 6. doi: 10.1177/20592043231208000.
  • Maidhof, Clemens; Müller, Viktor; Lartillot, Olivier; Agres, Kat; Bloska, Jodie & Asano, Rie [Vis alle 8 forfattere av denne artikkelen] (2023). Intra- and inter-brain coupling and activity dynamics during improvisational music therapy with a person with dementia: an explorative EEG-hyperscanning single case study. Frontiers in Psychology. ISSN 1664-1078. 14. doi: 10.3389/fpsyg.2023.1155732.
  • Szorkovszky, Alexander; Veenstra, Frank; Lartillot, Olivier Serge Gabriel; Jensenius, Alexander Refsum & Glette, Kyrre (2023). Embodied Tempo Tracking with a Virtual Quadruped, Proceedings of the Sound and Music Computing Conference 2023. SMC Network . ISSN 978-91-527-7372-7. doi: 10.5281/zenodo.10060970. Fulltekst i vitenarkiv
  • Thedens, Hans-Hinrich & Lartillot, Olivier (2023). AudioSegmentor: Et verkt?y for formidling av arkivopptak p? nettet. Studia Musicologica Norvegica. ISSN 0332-5024. 49(1), s. 92–101. doi: 10.18261/smn.49.1.7. Fulltekst i vitenarkiv
  • Lartillot, Olivier; Johansson, Mats Sigvard; Elowsson, Anders; Monstad, Lars L?berg & Cyvin, Mattias Stor?s (2023). A Dataset of Norwegian Hardanger Fiddle Recordings with Precise Annotation of Note and Beat Onsets. Transactions of the International Society for Music Information Retrieval. ISSN 2514-3298. 6(1), s. 186–202. doi: 10.5334/TISMIR.139.
  • Juslin, Patrik N.; Sakka, Laura S.; Barradas, Gon?alo T. & Lartillot, Olivier (2022). Emotions, mechanisms, and individual differences in music listening: A stratified random sampling approach. Music Perception. ISSN 0730-7829. 40(1), s. 55–86. doi: 10.1525/mp.2022.40.1.55. Fulltekst i vitenarkiv
  • Lartillot, Olivier; Elovsson, Anders; Johansson, Mats Sigvard; Thedens, Hans-Hinrich & Monstad, Lars Alfred L?berg (2022). Segmentation, Transcription, Analysis and Visualisation of the Norwegian Folk Music Archive. I Pugin, Laurent (Red.), DLfM '22: 9th International Conference on Digital Libraries for Musicology. Association for Computing Machinery (ACM). ISSN 978-1-4503-9668-4. s. 1–9. doi: https:/doi.org/10.1145/3543882.3543883. Fulltekst i vitenarkiv
  • Haugen, Mari Romarheim (2021). Investigating Music-Dance Relationships. A Case Study of Norwegian Telespringar. Journal of music theory. ISSN 0022-2909. 65(1), s. 17–38. doi: 10.1215/00222909-9124714.
  • Lartillot, Olivier (2021). Computational Musicological Analysis of Notated Music: a Brief Overview. Nota Bene. ISSN 1891-4829. 15, s. 142–161. Fulltekst i vitenarkiv
  • Weisser, Stéphanie; Lartillot, Olivier & Sechehaye, Hélène (2021). Investiguer la grésillance. Pour une approche ethno-acoustique du timbre musical. Cahiers d'ethnomusicologie. ISSN 2235-7688. 34, s. 37–58.
  • Elovsson, Anders & Lartillot, Olivier (2021). A Hardanger Fiddle Dataset with Performances Spanning Emotional Expressions and Annotations Aligned using Image Registration, Proceedings of the 22nd International Society for Music Information Retrieval Conference, Online, Nov 7-12, 2021. International Society for Music Information Retrieval. ISSN 978-1-7327299-0-2. s. 174–181. Fulltekst i vitenarkiv
  • Lartillot, Olivier; Nymoen, Kristian; C?mara, Guilherme Schmidt & Danielsen, Anne (2021). Computational localization of attack regions through a direct observation of the audio waveform. Journal of the Acoustical Society of America. ISSN 0001-4966. 149(1), s. 723–736. doi: 10.1121/10.0003374.
  • Bruford, Fred & Lartillot, Olivier (2020). Multidimensional similarity modelling of complex drum loops using the GrooveToolbox, Proceedings of the 21st International Society for Music Information Retrieval (ISMIR) Conference. McGill-Queen's University Press. ISSN 978-0-9813537-0-8. s. 263–270. Fulltekst i vitenarkiv
  • Lartillot, Olivier & Bruford, Fred (2020). Bistate reduction and comparison of drum patterns, Proceedings of the 21st International Society for Music Information Retrieval (ISMIR) Conference. McGill-Queen's University Press. ISSN 978-0-9813537-0-8. s. 318–324. Fulltekst i vitenarkiv
  • Elovsson, Karl Anders (2020). Polyphonic pitch tracking with deep layered learning. Journal of the Acoustical Society of America. ISSN 0001-4966. 148(1), s. 446–468. doi: 10.1121/10.0001468.
  • Lartillot, Olivier; Cancino-Chacón, Carlos & Brazier, Charles (2020). Real-Time Visualisation Of Fugue Played By A String Quartet. I Spagnol, Simone & Valle, Andrea (Red.), Proceedings of the 17th Sound and Music Computing Conference. Axea sas/SMC Network. ISSN 978-88-945415-0-2. s. 115–122. Fulltekst i vitenarkiv

Se alle arbeider i Cristin

  • Lartillot, Olivier (2024). Successes and challenges of computational approaches for audio and music analysis and for predicting music-evoked emotion.
  • Lartillot, Olivier (2024). KI-verkt?y for h?ndtering, transkribering og analyse av musikkarkiver.
  • Ziegler, Michelle; Sudo, Marina; Akkermann, Miriam & Lartillot, Olivier (2024). Towards Collaborative Analysis: Kaija Saariaho’s IO.
  • Lartillot, Olivier (2024). Musicological and Technological Perspectives on Computational Analysis of Electroacoustic Music. I Jensenius, Alexander Refsum (Red.), Sonic Design: Explorations Between Art and Science. Springer Nature. ISSN 978-3-031-57892-2. s. 271–297. doi: https:/doi.org/10.1007/978-3-031-57892-2_15.
  • Lartillot, Olivier (2024). Harmonizing Tradition with Technology: Enhancing Norwegian Folk Music through Computational Innovation.
  • Monstad, Lars L?berg & Lartillot, Olivier (2024). muScribe: a new transcription service for music professionals.
  • Lartillot, Olivier (2024). MIRAGE Closing Seminar: Digitisation and computer-aided music analysis of folk music.
  • Johansson, Mats Sigvard & Lartillot, Olivier (2024). Automated transcription of Hardanger fiddle music: Tracking the beats.
  • Thedens, Hans-Hinrich & Lartillot, Olivier (2024). The Norwegian Catalogue of Folk Music Online.
  • Lartillot, Olivier (2024). Real-time MIRAGE visualisation of Bartok's first quartet, first movement.
  • Lartillot, Olivier (2024). Overview of the MIRAGE project.
  • Monstad, Lars L?berg & Lartillot, Olivier (2024). Automated transcription of Hardanger fiddle music: Detecting the notes.
  • Lartillot, Olivier & Monstad, Lars L?berg (2023). MIRAGE - A Comprehensive AI-Based System for Advanced Music Analysis.
  • Christodoulou, Anna-Maria; Lartillot, Olivier & Anagnostopoulou, Christina (2023). Computational Analysis of Greek Folk Music of the Aegean.
  • Lartillot, Olivier (2023). Towards a Comprehensive Modelling Framework for Computational Music Transcription/Analysis.
  • Lartillot, Olivier (2023). Music Therapy Toolbox, and prospects.
  • Lartillot, Olivier & Monstad, Lars L?berg (2023). Computational music analysis: Significance, challenges, and our proposed approach.
  • Lartillot, Olivier (2023). MIRAGE Symposium #2: Music, emotions, analysis, therapy ... and computer.
  • Wosch, Thomas; Vobig, Bastian; Lartillot, Olivier & Christodoulou, Anna-Maria (2023). HIGH-M (Human Interaction assessment and Generative segmentation in Health and Music).
  • Maidhof, Clemens; Agres, Kat; Fachner, J?rg & Lartillot, Olivier (2023). Intra- and inter-brain coupling during music therapy.
  • Monstad, Lars L?berg & Lartillot, Olivier (2023). Automatic Transcription Of Multi-Instrumental Songs: Integrating Demixing, Harmonic Dilated Convolution, And Joint Beat Tracking.
  • Christodoulou, Anna-Maria; Lartillot, Olivier & Anagnostopoulou, Christina (2023). Greek Folk Music Dataset.
  • Lartillot, Olivier; Swarbrick, Dana; Upham, Finn & Cancino-Chacón, Carlos Eduardo (2023). Video visualization of a string quartet performance of a Bach Fugue: Design and subjective evaluation.
  • Bishop, Laura; H?ffding, Simon; Laeng, Bruno & Lartillot, Olivier (2023). Mental effort and expressive interaction in expert and student string quartet performance.
  • Monstad, Lars Alfred L?berg (2023). KI kan demokratisere musikkbransjen. VG : Verdens gang. ISSN 0805-5203.
  • Lartillot, Olivier (2023). Computational audio and musical features extraction: from MIRtoolbox to the MiningSuite.
  • Lartillot, Olivier (2023). Dynamic Visualisation of Fugue Analysis, Demonstrated in a Live Concert by the Danish String Quartet.
  • Lartillot, Olivier (2023). Towards a comprehensive model for computational music transcription and analysis: a necessary dialog between machine learning and rule-based design?
  • Lartillot, Olivier; Thedens, Hans-Hinrich; Mjelva, Olav Lukseng?rd; Elovsson, Anders; Monstad, Lars L?berg & Johansson, Mats Sigvard [Vis alle 8 forfattere av denne artikkelen] (2023). Norwegian Folk Music & Computational Analysis.
  • Monstad, Lars Alfred L?berg; Baden, Peter & W?rstad, Bernt Isak Grave (2023). Kan kunstig intelligens brukes i l?tskriverprosessen?
  • Monstad, Lars L?berg (2023). Kunstig Intelligens i kunst og kultur. [TV]. NRK Dagsrevyen.
  • Monstad, Lars Alfred L?berg (2023). Demonstrasjon av Kunstig Intelligens som verkt?y for komponister.
  • Monstad, Lars L?berg; Silje Larsen, Borgan & Vegard, Waske (2023). AI i musikken: konsekvenser og muligheter.
  • Danielsen, Anne; C?mara, Guilherme Schmidt; Lartillot, Olivier; Leske, Sabine Liliana & Spiech, Connor (2022). Musical rhythm. Behavioural, computational and neurophysiological perspectives.
  • Lartillot, Olivier & Thedens, Hans-Hinrich (2022). Online Norwegian Folk Music Archive.
  • Lartillot, Olivier; God?y, Rolf Inge & Christodoulou, Anna-Maria (2022). Computational detection and characterisation of sonic shapes: Towards a Toolbox des objets sonores.
  • Lartillot, Olivier; Elovsson, Anders; Johansson, Mats Sigvard; Thedens, Hans-Hinrich & Monstad, Lars Alfred L?berg (2022). Segmentation, Transcription, Analysis and Visualisation of the Norwegian Folk Music Archive.
  • Dalgard, Joachim; Lartillot, Olivier; Vuoskoski, Jonna Katariina & Guldbrandsen, Erling Eliseus (2021). Absorption - Somewhere between the heart and the brain.
  • Lartillot, Olivier & Johansson, Mats Sigvard (2021). Automated beat tracking of Norwegian Hardanger fiddle music.
  • Danielsen, Anne (2021). Opening remarks, presentation of RITMO.
  • Lartillot, Olivier; Guldbrandsen, Erling Eliseus & Cancino-Chacón, Carlos Eduardo (2021). Dynamics analysis, and application to a comparative study of Bruckner performances.
  • Lartillot, Olivier & Johansson, Mats Sigvard (2021). Tracking beats in Hardanger fiddle tunes .
  • Lartillot, Olivier; Elovsson, Anders & Mjelva, Olav Lukseng?rd (2021). A new software for computer-assisted annotation of music recordings, with a focus on transcription.
  • Lartillot, Olivier (2021). Presentation of MIRAGE project.
  • Tidemann, Aleksander & Lartillot, Olivier (2021). Interactive tools for exploring performance patterns in hardanger fiddle music.
  • Elovsson, Anders & Lartillot, Olivier (2021). A Hardanger Fiddle Dataset with Performances Spanning Emotional Expressions and Annotations Aligned using Image Registration.
  • Lartillot, Olivier & Lillesl?tten, Mari (2021). Kunstig intelligens kan hjelpe deg ? forst? musikk bedre. [Internett]. RITMO News.
  • Lartillot, Olivier & Lillesl?tten, Mari (2021). Olivier Lartillot utvikler verkt?y for ? forst? musikk bedre. [Internett]. Det humanistiske fakultet UiO YouTube account.
  • Tidemann, Aleksander; Lartillot, Olivier & Johansson, Mats Sigvard (2021). Towards New Analysis And Visualization Software For Studying Performance Patterns in Hardanger Fiddle Music.
  • Elovsson, Anders & Lartillot, Olivier (2021). HF1: Hardanger fiddle dataset.
  • Lartillot, Olivier; Cancino-Chacón, Carlos & Brazier, Charles (2020). Real-Time Visualisation Of Fugue Played By A String Quartet.
  • Bruford, Fred & Lartillot, Olivier (2020). Multidimensional similarity modelling of complex drum loops using the GrooveToolbox.
  • Lartillot, Olivier & Toiviainen, Petri (2020). Read about the Matlab MIRtoolbox. Young Acousticians Network (YAN) Newsletter. s. 4–10.
  • Lartillot, Olivier & Bruford, Fred (2020). Bistate reduction and comparison of drum patterns.
  • Christodoulou, Anna-Maria; Anagnostopoulou, Christina & Lartillot, Olivier (2022). Computational Analysis of Greek folk music of the Aegean islands. National and Kapodistrian University of Athens.

Se alle arbeider i Cristin

Publisert 12. mai 2019 23:45 - Sist endret 18. nov. 2024 09:36

Deltakere

Detaljert oversikt over deltakere