-
Lartillot, Olivier
(2025).
Computational music analysis.
-
Wosch, Thomas; Vobig, Bastian & Lartillot, Olivier
(2025).
Human Interaction assessment and Generative segmentation in Health & Music.
doi:
https:/www.youtube.com/watch?v=I4jaZIzX0wg.
Vis sammendrag
Improvisation in music therapy has been shown to be an effective technique for engaging clients in emotionally rooted (inter)action to treat affective disorders such as major depression (Aalbers et al., 2017; Erkkil? et al., 2011). During improvisation, however, a variety of musical information is exchanged, resulting in a highly complex musical and interpersonal situation. While traditional models of music therapy analysis emphasise aural analysis and assessment of single sessions (Bruscia, 1987), more recent and elaborated methods, such as microanalysis, focus on the detailed development of improvisation sessions (Wosch, 2021; Wosch & Erkkil?, 2016), which comes at the cost of a more time-consuming application process. Digital processing, as in music information retrieval and machine learning, seems promising to accelerate the analysis process, but requires considerable preliminary work in data preprocessing and formalisation of the high-level concepts used in music therapy to develop a suitable dataset for model training. Moreover, additional benefits of digital processing comprehend a more detailed and precise analysis of musical data.
-
Sudo, Marina; Ziegler, Michelle; Akkermann, Miriam & Lartillot, Olivier
(2025).
Towards Collaborative Analysis: Kaija Saariaho’s Io (1986–87).
-
Sudo, Marina & Lartillot, Olivier
(2025).
Contemporary Music Analysis and Auditory Memory: The Use of Computational Tools as an Aid for Listening.
doi:
https:/fabricadesites.fcsh.unl.pt/ncmm/ncmm-2025-program/.
Vis sammendrag
Music analysis involves categorising and interpreting sonic elements to uncover the structure and meaning of a work. In contemporary music studies, analysts often face methodological challenges in this process, especially when dealing with works that contain high degrees of complexity and ambiguity in terms of timbre, texture and temporal structure. This paper proposes a methodological model for analysing spatiotemporal complexities commonly observed in contemporary repertoires, utilising computational tools to enhance auditory memory and expand interpretative possibilities.
Auditory memory plays a pivotal role in aural analysis, an approach that serves as a valuable alternative or complement to traditional score-based analysis. Rooted in Pierre Schaeffer’s typomorphology of objets sonores and the work of other analysts in electroacoustic music studies, the general principles of aural analysis can be outlined in a three-step process: 1) attentive listening to the acoustic properties of sounds, 2) describing and categorising their sonic variations, and 3) assessing their functions within a large-scale formal structure. Computational sound visualisation tools are frequently employed in this process to assist in transcribing and retaining musical events that are either absent from the score or difficult to interpret aurally due to textural complexities and/or timbral elusiveness. Despite their increasing use, however, the full potential of these tools remains largely unexplored in contemporary music studies. By digitally decomposing the transformation processes of ambiguous musical flows and supporting the organisation and structuring of auditory memory, computational analysis of audio data and various visualisation methods can deepen our understanding of both local sonic morphology and large-scale formal trajectory.
In line with these considerations, the paper investigates how specialised computer interfaces can facilitate music analytical processes. Two research questions guide this investigation: 1) How can we analyse a stream of sonic textures; and 2) How can we outline the formal structure of a work that embraces extremes of sonic energy and polyrhythmic intricacy? To explore these questions, we have developed muScope, a new computer program that enables users to browse within high-resolution sonograms in tandem with a range of graphical representations capturing audio, timbral, rhythmic and structural descriptions. The analysis of spectral “fluctuations” allows for the identification of rapid pulsations at the middle ground between rhythm and timbre. Self-similarity matrix representations can serve as a tool for outlining the structural division of the audio data based on various sonic attributes. We integrate these visual representations into an analytical workflow designed to support the construction of a composition’s formal structure.
Our methods are demonstrated through an analysis of excerpts from Kaija Saariaho’s Io for large ensemble and electronics (1986–87) and Rapha?l Cendo’s Corps for piano and ensemble (2015). This integrated analytical approach offers new insights into the interplay between musical perception, memory and analytical interpretation using digital tools.
-
-
Lartillot, Olivier
(2025).
Computational Music Analysis: Toolbox and application to music psychology & therapy.
-
-
-
Lartillot, Olivier
(2024).
Successes and challenges of computational approaches for audio and music analysis and for predicting music-evoked emotion.
Vis sammendrag
Background
Decades of research in computational sound and music analysis has led to a large range of analysis tools offering rich and diverse description of music, although a large part of the subtlety of music remains out of reach. These descriptors are used to establish computational models predicting perceived or induced emotion directly from music. Although the models can predict a significant amount of variability of emotions experimentally measured (Panda et al., 2023), further progress seems hard to achieve, probably due to the subtlety of music and of the mechanisms underlying the evocation of emotion from music.
Aims
An extensive but synthetic panorama of computational research in sound and music analysis as well as emotion prediction from music is presented. Core challenges are highlighted and prospective ways forward are suggested.
Main contribution
For each separate music dimension (dynamics, timbre, rhythm, tonality and mode, motifs, phrasing, structure and form), a synthetic panorama of the state of the art is evoked, highlighting strengths and challenges as well as indicating how particular sound and music features have been found to correlate with rated emotions. The various strategies for modelling emotional reactions to audio and musical features are presented and discussed.
One common general analytical approach carries out a broad and approximate analysis of the audio recording based on simple mathematical models, describing individual audio or musical characteristics numerically. It is suggested that such loose approach might tend to drift away from commonly understood musical processes and to generate artefacts. This vindicates a more traditional musicological approach based on a focus on the score or approximations of it – through automated transcription if necessary – and a reconstruction of the types of traditional representations commonly studied in musicology. I also argue for the need to closely reflect the way humans listen to and understand music, inspired by a cognitive perspective. Guided by these insights, I sketch the idea of a complex system made of interdependent modules, founded on sequential pattern inference and activation scores not based on statistical sampling.
I also suggest perspectives for the improvement of computational prediction of emotions evoked by music. Discussion and conclusion
Further improvements of computational music analysis methods, as well as emotion prediction, seem to call for a change of modelling paradigm.
References
R. Panda, R. Malheiro, R. Paiva, "Audio Features for Music Emotion Recognition: A Survey", IEEE Transactions on Affective Computing, 14-1, 68-88, 2023.
-
Lartillot, Olivier
(2024).
KI-verkt?y for h?ndtering, transkribering og analyse av musikkarkiver.
Vis sammendrag
Jeg presenterer en rekke verkt?y utviklet i 澳门葡京手机版app下载 med Nasjonalbiblioteket. AudioSegmentor deler automatisk b?ndopptak i individuelle musikkstykker. Dette verkt?yet forenklet digitaliseringen av Norsk folkemusikksamling. Vi bruker avanserte dyp l?ringsmetoder for ? skape et banebrytende automatisk musikktranskriberingssystem, MusScribe, f?rst finjustert for Hardingfele, og n? gjort tilgjengelig for musikkarkivprofesjonelle for et bredt spekter av musikk. Jeg diskuterer ogs? v?re p?g?ende fremskritt innen den automatiserte musikologiske analysen av folkemusikkstykker og omfattende samlinger.
-
Ziegler, Michelle; Sudo, Marina; Akkermann, Miriam & Lartillot, Olivier
(2024).
Towards Collaborative Analysis: Kaija Saariaho’s IO.
-
Thedens, Hans-Hinrich & Lartillot, Olivier
(2024).
The Norwegian Catalogue of Folk Music Online.
-
Monstad, Lars L?berg & Lartillot, Olivier
(2024).
muScribe: a new transcription service for music professionals.
-
Johansson, Mats Sigvard & Lartillot, Olivier
(2024).
Automated transcription of Hardanger fiddle music: Tracking the beats.
-
Monstad, Lars L?berg & Lartillot, Olivier
(2024).
Automated transcription of Hardanger fiddle music: Detecting the notes.
-
Lartillot, Olivier
(2024).
MIRAGE Closing Seminar: Digitisation and computer-aided music analysis of folk music.
Vis sammendrag
One aim of the MIRAGE project is to conceive new technologies allowing to better access, understand and appreciate music, with a particular focus on Norwegian folk music. This seminar presents what has been achieved during the four years of the project, leading in particular to the digital version of the Norwegian Catalogue of Folk Music. We are also conceiving tools to automatically transcribe audio recordings of folk music. More advanced musicological applications are discussed as well. To conclude, we introduce the new spinoff project, called muScribe, aimed at the development of transcription services, for a broad range of music, besides folk music, in a first stage tailored to professional organisations such as archives, publishers and producers.
-
Lartillot, Olivier
(2024).
Overview of the MIRAGE project.
-
Lartillot, Olivier
(2024).
Harmonizing Tradition with Technology: Enhancing Norwegian Folk Music through Computational Innovation.
Vis sammendrag
My work involves developing computational tools to safeguard and elevate the cultural significance of music repertoires, with a focus on a cooperative project with the National Library of Norway related to their collection of Norwegian folk music. Our first phase centered on transforming unstructured audio tapes into a systematic dataset of melodies while ensuring its access and longevity through efficient data management and linking with other catalogues.
Our core activity involves transcribing audio recordings into scores, comparing the traditional manual method with our modern attempts towards automation. Providing detailed performance notation, the close alignment between scores and audio recordings will help improve comprehension and overall accessibility, as well as a more advanced structuring of the collection.
Challenges arose when incorporating this music into the International Inventory of Musical Sources (RISM) database due to the incompatible 'incipit' concept, unfitting genres like Hardanger fiddle folk music. We suggest innovative generalisations for this concept. Moreover, we're creating techniques to digitally dissect the musical corpus, aiming to extract key features of each tune. This initiative not only serves as an alternative to incipits but also provides novel metadata formats, increasing the usability and connectivity within its content and with other databases.
-
Monstad, Lars L?berg
(2023).
Kunstig Intelligens i kunst og kultur.
[TV].
NRK Dagsrevyen.
-
Monstad, Lars L?berg; Larsen, Borgan Silje & Vegard, Waske
(2023).
AI i musikken: konsekvenser og muligheter.
-
Lartillot, Olivier
(2023).
Towards a Comprehensive Modelling Framework for Computational Music Transcription/Analysis.
Vis sammendrag
Computational music analysis, still in its infancy, lacking overarching reliable tools, can be seen at the same time as a promising approach to fulfill core epistemo- logical needs. Analysis in the audio domain, although approaching music in its entirety, is doomed to superficiality if it does not fully embrace the underlying symbolic system, requiring a complete automated transcription and scaffolding of metrical, modal/harmonic, voicing and formal structures on top of the layers of elementary events (such as notes). Automated transcription enables to get over the polarity between sound and music notation, providing an interfacing semiotic system that combines the advantages of both domains, and surpassing the limitation of traditional approaches based on graphic representations. Deep learning and signal processing approaches for the discretisation of the continuous signal are compared and discussed. The multi-dimensional music transcription and analysis framework (where both tasks are actually deeply intertwined) requires to take into account the far-reaching interdependencies between dimensions, for instance between motivic and metrical analysis. We propose an attempt to build such a comprehensive framework, founded on general musical and cognitive principles and an attempt to build music analysis capabilities through a combina- tion of simple and general operators. The validity of the analyses is addressed in close discussion with music experts. The potential capability to produce valid analyses for a very large corpus of music would make such a complex system a potentially relevant blueprint for a cognitive modelling of music understanding. We try to address a large diversity of music cultures and their specific challenges: among others, maqam modes (with Mondher Ayari), Norwegian Hardanger fiddle rhythm (with Mats Johansson and Hans-Hinrich Thedens), djembe drumming from Mali (with Rainer Polak) or electroacoustic music (Towards a Toolbox des objets musicaux, with Rolf Inge God?y). We aim at making the framework fully transparent, collaborative and open.
-
Monstad, Lars Alfred L?berg
(2023).
Demonstrasjon av Kunstig Intelligens som verkt?y for komponister.
-
Lartillot, Olivier
(2023).
Computational audio and musical features extraction: from MIRtoolbox to the MiningSuite.
-
Christodoulou, Anna-Maria; Lartillot, Olivier & Anagnostopoulou, Christina
(2023).
Computational Analysis of Greek Folk Music of the Aegean.
-
Monstad, Lars Alfred L?berg; Baden, Peter & W?rstad, Bernt Isak Grave
(2023).
Kan kunstig intelligens brukes i l?tskriverprosessen?
-
Monstad, Lars Alfred L?berg
(2023).
KI kan demokratisere musikkbransjen.
-
Lartillot, Olivier
(2023).
Dynamic Visualisation of Fugue Analysis, Demonstrated in a Live Concert by the Danish String Quartet.
-
Lartillot, Olivier
(2023).
Towards a comprehensive model for computational music transcription and analysis: a necessary dialog between machine learning and rule-based design?
-
Lartillot, Olivier & Monstad, Lars L?berg
(2023).
MIRAGE - A Comprehensive AI-Based System for Advanced Music Analysis.
-
Bishop, Laura; H?ffding, Simon; Laeng, Bruno & Lartillot, Olivier
(2023).
Mental effort and expressive interaction in expert and student string quartet performance.
-
Lartillot, Olivier; Swarbrick, Dana; Upham, Finn & Cancino-Chacón, Carlos Eduardo
(2023).
Video visualization of a string quartet performance of a Bach Fugue: Design and subjective evaluation.
-
Lartillot, Olivier
(2023).
MIRAGE Symposium #2: Music, emotions, analysis, therapy ... and computer.
Vis sammendrag
The 2nd MIRAGE Symposium covers a broad range of topics related to the MIRAGE project, mainly related to music and emotion, music cognition in general, music analysis and music therapy. Featuring two keynotes by Patrik Juslin and Didier Grandjean.
-
Maidhof, Clemens; Agres, Kat; Fachner, J?rg & Lartillot, Olivier
(2023).
Intra- and inter-brain coupling during music therapy.
-
Wosch, Thomas; Vobig, Bastian; Lartillot, Olivier & Christodoulou, Anna-Maria
(2023).
HIGH-M (Human Interaction assessment and Generative segmentation in Health and Music).
-
Lartillot, Olivier
(2023).
Music Therapy Toolbox, and prospects.
-
Lartillot, Olivier; Thedens, Hans-Hinrich; Mjelva, Olav Lukseng?rd; Elovsson, Anders; Monstad, Lars L?berg & Johansson, Mats Sigvard
[Vis alle 8 forfattere av denne artikkelen]
(2023).
Norwegian Folk Music & Computational Analysis.
Vis sammendrag
As a prélude for Norway's Constitution Day, this special event celebrated the Norwegian folk music tradition, showcasing our new online archive and demonstrating the richness of Hardanger fiddle music, with live performance. One aim of the project is to conceive new technologies allowing to better access, understand and appreciate Norwegian folk music.
In this event, we introduced a new online version of the Norwegian Folk Music Archive and discuss underlying theoretical and technical challenges. A live concert/workshop, with the participation of Olav Lukseng?rd Mjelva, offered a lively introduction to Hardanger fiddle music and its elaborate rhythm. The interests and challenges of automated transcription and analysis were discussed, with the public release of our new software Annotemus.
The symposium was organised in the context of the MIRAGE project (RITMO, in collaboration with the National Library of Norway's Digital Humanities Laboratory).
-
Lartillot, Olivier & Monstad, Lars L?berg
(2023).
Computational music analysis: Significance, challenges, and our proposed approach.
Vis sammendrag
Music is something that we mostly all appreciate, yet it remains a hidden and enigmatic concept for many of us. Music notation, in the form of music scores, facilitates practicing and enhances the understanding of the richness of musical works. However, acquiring musical scores for any music performance is a tedious and demanding task (called music transcription) that demands considerable proficiency. Hence the interest of computational automation. But music is not just notes, it is also melody, rhythm, themes, timbre, and very subtle aspects such as form. While many of us may not be consciously familiar with these concepts, they still have a subconscious influence on our aesthetic experience. Interestingly, it often happens that the more we consciously understand the underlying language of music, the more we tend to appreciate and enjoy it. Therefore, there is value in creating computational tools that can automate and enhance these types of analyses.
The presenters' past work resulted in the creation of Matlab's MIRtoolbox, which measures a broad range of musical characteristics directly from audio through signal processing techniques. Currently, the MIRAGE project prioritises music transcription (with a particular focus on Norwegian folk music), blending neural-network-based deep learning with conventional rule-based models. Through this project, they highlight the importance of acknowledging the interconnectedness between all musical elements. Additionally, they have crafted animated visualisations to make analyses more accessible to the general public and are aiming to make music transcription technology available to the public, with support from UiO Growth House.
-
Monstad, Lars L?berg & Lartillot, Olivier
(2023).
Automatic Transcription Of Multi-Instrumental Songs: Integrating Demixing, Harmonic Dilated Convolution, And Joint Beat Tracking.
Vis sammendrag
In the rapidly expanding field of music information retrieval (MIR), automatic transcription remains one of the most sought-after capabilities, especially for songs that employ multiple instruments. Musscribe emerges as a state-of-the-art transcription tool that addresses this challenge by integrating three distinct methodologies: demixing, harmonic dilated convolution, and joint beat tracking. Demixing is employed to isolate individual instruments within a song by separating overlapping audio sources, thus ensuring each instrument is transcribed distinctly. Beat tracking is then run as a parallel process to extract the joint beat and downbeat estimations. These processes results in an output midi file, which is then quantized using information derived from the beat tracking. As such, this method paves the way for more accurate and sophisticated analyses, bridging the gap between human and machine understanding of music. Together, these methodologies allow us to produce transcriptions that are not only accurate but also highly representative of the original compositions. Preliminary tests and evaluations showcase the potential in transcribing complex musical pieces with high fidelity, outperforming many contemporary tools in the market. This innovative approach not only has implications for music transcription but also for broader applications in audio analysis, remixing, and digital music production. The model has been instrumental in accelerating the composition process for several Norwegian television shows. Moreover, its efficacy can be observed in the Netflix series "A Storm for Christmas." Renowned composer Peter Baden harnessed this tool to enhance his workflow, proving the demand for innovative tools like this in the professional music industry.
-
Lartillot, Olivier; God?y, Rolf Inge & Christodoulou, Anna-Maria
(2022).
Computational detection and characterisation of sonic shapes: Towards a Toolbox des objets sonores.
Vis sammendrag
Computational detection and analysis of sound objects is of high importance both for musicology and sound design. Yet Music Information Retrieval technologies have so far been mostly focusing on transcription of music into notes in a classical sense whereas we are interested in detecting sound objects and their feature categories, as was suggested by Pierre Schaeffer’s typology and morphology of sound objects in 1966, reflecting basic sound-producing action types. We propose a signal-processing based approach for segmentation, based on a tracking of the salient characteristics over time, and dually Gestalt-based segmentation decisions based on changes. Tracking of pitched sound relies on partial tracking, whereas the analysis of noisy sound requires tracking of larger frequency bands possibly varying over time. The resulting sound objects are then described based on Schaeffer’s taxonomy and morphology, expressed first in the form of numerical descriptors, each related to one type of taxonomy (percussive/sustained/iterative, stable/moving pitch vs unclear pitch) or morphology (such as grain). This multidimensional feature representation is further divided into discrete categories related to the different classes of sounds. The typological and morphological categorisation is driven by the theoretical and experimental framework of the morphodynamical theory. We first experiment on isolated sounds from the Solfège des objets sonores—which features a large variety of sound sources—before considering more complex configurations featuring a succession of sound objects without silence or with simultaneous sound objects. Analytical results are visualised in the form of graphical representations, aimed both for musicology and music pedagogy purposes. This will be applied to the graphical descriptions of and browsing within large music catalogues. The application of the analytical descriptions to music creation is also investigated.
-
Lartillot, Olivier
(2022).
The MIRAGE project: Unlocking new computational abilities in computational music analysis.
-
Lartillot, Olivier
(2022).
Computational music analysis: Application to music & emotion.
-
Lartillot, Olivier; Elovsson, Anders; Johansson, Mats Sigvard; Thedens, Hans-Hinrich & Monstad, Lars Alfred L?berg
(2022).
Segmentation, Transcription, Analysis and Visualisation of the Norwegian Folk Music Archive.
Vis sammendrag
We present an ongoing project dedicated to the transmutation of a collection of field recordings of Norwegian folk music established in the 1960s into an easily accessible online catalogue augmented with advanced music technology and computer musicology tools. We focus in particular on a major highlight of this collection: Hardanger fiddle music. The studied corpus was available as a series of 600 tape recordings, each tape containing up to 2 hours of recordings, associated with metadata indicating approximate positions of pieces of music. We first need to retrieve the individual recording associated with each tune, through the combination of an automated pre-segmentation based on sound classification and audio analysis, and a subsequent manual verification and fine-tuning of the temporal positions, using a home-made user interface.
Note detection is carried out by a deep learning method. To adapt the model to Hardanger fiddle music, musicians were asked to record themselves and annotate all played note, using a dedicated interface. Data augmentation techniques have been designed to accelerate the process, in particular using alignment of varied performances of same tunes. The transcription also requires the reconstruction of the metrical structure, which is particularly challenging in this style of music. We have also collected ground-truth data, and are conceiving a computational model.
The next step consists in carrying out detailed music analysis of the transcriptions, in order to reveal in particular intertextuality within the corpus. A last direction of research is aimed at designing tools to visualise each tune and the whole catalogue, both for musicologists and general public.
-
-
Lartillot, Olivier & Johansson, Mats Sigvard
(2021).
Automated beat tracking of Norwegian Hardanger fiddle music.
Vis sammendrag
Norwegian Hardanger fiddle music is typically played by a solo fiddler, without rhythmic accompaniment except for the musician’s discreet foot stomping. Some of its repertoire features an asymmetrical ternary meter, with an uneven proportion of durations between the three beats of each bar, and with varying degrees of fluctuation of those proportions throughout each piece. In addition, there is often no clear audible onset corresponding to the beat position. As a result, many listeners find it difficult to hear the beats without experience from playing or dancing, and the beat onsets cannot be properly tracked by state-of-the-art beat trackers.
The aim of this study is to develop a computational model of beat tracking of Hardanger fiddle music. Due to the rhythmic irregularity of the music, computational approaches relying on the detection of regular periodicities cannot be used. The proposed strategy adopts a cognitive perspective, modeling processes that progressively infer beats while scanning the music sequence chronologically. To each successive note is associated a tentative metrical position, which is determined based on a set of rules, using various input data such as (1) the ratio of the inter-onset interval (IOI) from the previous beat onset to the current note onset and the preceding inter-beat-onset interval and (2) the ratio of the IOI from the bar onset to the current note onset and the preceding inter-bar-onset interval. Successive repetition of eighth notes (as well as of eighth-note triplets) induce specific states that also guide the subsequent extension of the sequence. Multiple beat tracking scenarios can coexist at particular moments in the tune for very short periods. In particular, the very first notes at the beginning of the tune may initially imply conflicting metrical structures and tempi. The conflicting parallel beat tracking scenarios are progressively extended note after note in parallel. A scenario ends whenever it reaches a dead-end situation where the music is in total contradiction. Multiple scenarios are fused when they are continued exactly the same way, and only the scenario deemed the most congruent is retained.
One particularity of Hardanger fiddle music is that beat onsets are not precise points in time but rather diffuse temporal extension, closely related to the notion of beat bin (Danielsen, 2010). Sometimes, multiple successive notes can all be considered as possible onsets for a given beat (Johansson, 2010; Stover et al., 2021). This multiplicity of beat onsets has been integrated into the model.
Most of the analysis can be carried out using solely note onset time as input data, although more challenging cases occasionally require taking into account note duration or higher structure such as motivic repetition. This indicates that a proper beat tracker needs to be integrated as a module within a comprehensive music analysis framework, with bidirectional dependencies with the other modules of the framework. The model has so far been tuned and tested on a couple of tunes only. Its application to the automated analysis of a larger corpus is under investigation.
Danielsen, Anne (2010). “Here, there, and everywhere. Three accounts of pulse in D'Angelo's 'Left and Right’.” In A. Danielsen (Ed.), Musical Rhythm in the Age of Digital Reproduction. Farnham: Ashgate/Routledge, UK.
Johansson, Mats (2010). “The Concept of Rhythmic Tolerance – Examining Flexible Grooves in Scandinavian Folk-fiddling.” In A. Danielsen (Ed.), Musical Rhythm in the Age of Digital Reproduction. Farnham: Ashgate/Routledge, UK.
Stover, Chris; Danielsen, Anne & Johansson, Mats (2021). “Bins, Spans, Tolerance: Three Theories of Microtiming Behavior.” [under review in Music Theory Spectrum].
-
-
Lartillot, Olivier & Lillesl?tten, Mari
(2021).
Olivier Lartillot utvikler verkt?y for ? forst? musikk bedre.
[Internet].
Det humanistiske fakultet UiO YouTube account.
Vis sammendrag
Kunstig intelligens kan hjelpe deg ? forst? musikk bedre.
UiO-forsker Olivier Lartillot jobber for at ny teknologi kan ?pne folks ?rer for ny musikk.
-
-
Elovsson, Anders & Lartillot, Olivier
(2021).
A Hardanger Fiddle Dataset with Performances Spanning Emotional Expressions and Annotations Aligned using Image Registration.
Vis sammendrag
This paper presents a Hardanger fiddle dataset “HF1” with polyphonic performances spanning five different emotional expressions: normal, angry, sad, happy, and tender. The performances thus cover the four quadrants of the activity/valence-space. The onsets and offsets, together with an associated pitch, were human-annotated for each note in each performance by the fiddle players themselves. First, they annotated the normal version. These annotations were then transferred to the expressive performances using music alignment and finally human-verified. Two separate music alignment methods based on image registration were developed for this purpose; a B-spline implementation that produces a continuous temporal transformation curve and a Demons algorithm that produces displacement matrices for time and pitch that also account for local timing variations across the pitch range. Both methods start from an “Onsetgram” of onset salience across pitch and time and perform the alignment task accurately. Various settings of the Demons algorithm were further evaluated in an ablation study. The final dataset is around 43 minutes long and consists of 19 734 notes of Hardanger fiddle music, recorded in stereo. The dataset and source code are available online. The dataset will be used in MIR research for tasks involving polyphonic transcription, score alignment, beat tracking, downbeat tracking, tempo estimation, and classification of emotional expressions.
-
Lartillot, Olivier & Weisser, Stéphanie
(2021).
Roughness, Crackliness, Buzzingness, ...: Characterizations of Sonic Unsteadiness and Application to the Analysis of Traditional Music from Ethiopia, Kenya, Morocco and India.
-
Tidemann, Aleksander & Lartillot, Olivier
(2021).
Interactive tools for exploring performance patterns in hardanger fiddle music.
-
-
-