Possible papers and topics

Throughout the course, several papers will be presented. Some suggestions are given below

The two first papers will be discussed in the first lecture(s)

Dropout: a simple way to prevent neural networks from overfitting

SrivastavaG HintonA Krizhevsky… - The journal of machine …, 2014 - jmlr.org

Dropout as a bayesian approximation: Representing model uncertainty in deep learning

Y GalZ Ghahramani - international conference on machine learning, 2016 - jmlr.org

 

Boosting With the L2 Loss: Regression and Classification

P Bühlmann, B Yu - Journal of the American Statistical Association, 2003 - Taylor & Francis
 

Variational inference: A review for statisticians

DM BleiA KucukelbirJD McAuliffe - Journal of the American …, 2017 - Taylor & Francis

Auto-encoding variational bayes

DP KingmaWelling - arXiv preprint arXiv:1312.6114, 2013 - arxiv.org

Concrete dropout

Y GalJ HronA Kendall - Advances in Neural Information Processing …, 2017 - papers.nips.cc

Deep residual learning for image recognition

HeX ZhangS Ren, J Sun - Proceedings of the IEEE …, 2016 - openaccess.thecvf.com

Probabilistic machine learning and artificial intelligence

Z Ghahramani - Nature, 2015 - nature.com

On the difficulty of training recurrent neural networks

R Pascanu, T MikolovY Bengio - International conference on machine …, 2013 - jmlr.org

Auto-encoding variational bayes

DP KingmaM Welling - arXiv preprint arXiv:1312.6114, 2013 - arxiv.org

Explainable artificial intelligence: Understanding, visualizing and interpreting deep learning models

W Samek, T Wiegand, KR Müller - arXiv preprint arXiv:1708.08296, 2017 - arxiv.org

Super learner

MJ Van der LaanEC Polley… - Statistical applications in …, 2007 - degruyter.com

Why should i trust you?: Explaining the predictions of any classifier

MT RibeiroS SinghC Guestrin - Proceedings of the 22nd ACM …, 2016 - dl.acm.org

pdp: an R Package for constructing partial dependence plots

BM Greenwell - The R Journal, 2017 - pdfs.semanticscholar.org

Possible topics:

  • Gradient boosting
  • Reinforcement learning
  • Variational inference
  • Reccurent neural networks
  • Auto-encoding variational Bayes
  • Gradient Boosting
  • Bagging/Random forrest
  • Boltzman machines
  • Variational inference
  • Explainable AI (Lime, Shapley, partial dependency plots)
  • Ensemble learning/model averaging
  • Regularization (Lasso, Ridge, Elastic net)
  • H20, Keras, Adam,
  • Probabilistic graphical models
  • AutoML (https://arxiv.org/abs/1907.00909)
  •  

 

Published Aug. 15, 2019 3:01 PM - Last modified Aug. 23, 2024 11:27 AM