The two first papers will be discussed in the first lecture(s)
Dropout: a simple way to prevent neural networks from overfitting
N Srivastava, G Hinton, A Krizhevsky… - The journal of machine …, 2014 - jmlr.org
Dropout as a bayesian approximation: Representing model uncertainty in deep learning
Y Gal, Z Ghahramani - international conference on machine learning, 2016 - jmlr.org
Boosting With the L2 Loss: Regression and Classification
Variational inference: A review for statisticians
DM Blei, A Kucukelbir, JD McAuliffe - Journal of the American …, 2017 - Taylor & Francis
Auto-encoding variational bayes
DP Kingma, M Welling - arXiv preprint arXiv:1312.6114, 2013 - arxiv.org
Concrete dropout
Y Gal, J Hron, A Kendall - Advances in Neural Information Processing …, 2017 - papers.nips.cc
Deep residual learning for image recognition
K He, X Zhang, S Ren, J Sun - Proceedings of the IEEE …, 2016 - openaccess.thecvf.com
Probabilistic machine learning and artificial intelligence
Z Ghahramani - Nature, 2015 - nature.com
On the difficulty of training recurrent neural networks
R Pascanu, T Mikolov, Y Bengio - International conference on machine …, 2013 - jmlr.org
Auto-encoding variational bayes
DP Kingma, M Welling - arXiv preprint arXiv:1312.6114, 2013 - arxiv.org
Explainable artificial intelligence: Understanding, visualizing and interpreting deep learning models
Super learner
MJ Van der Laan, EC Polley… - Statistical applications in …, 2007 - degruyter.com
Why should i trust you?: Explaining the predictions of any classifier
MT Ribeiro, S Singh, C Guestrin - Proceedings of the 22nd ACM …, 2016 - dl.acm.org
pdp: an R Package for constructing partial dependence plots
BM Greenwell - The R Journal, 2017 - pdfs.semanticscholar.org
Possible topics:
- Gradient boosting
- Reinforcement learning
- Variational inference
- Reccurent neural networks
- Auto-encoding variational Bayes
- Gradient Boosting
- Bagging/Random forrest
- Boltzman machines
- Variational inference
- Explainable AI (Lime, Shapley, partial dependency plots)
- Ensemble learning/model averaging
- Regularization (Lasso, Ridge, Elastic net)
- H20, Keras, Adam,
- Probabilistic graphical models
- AutoML (https://arxiv.org/abs/1907.00909)