Lecture plan

Week 3

  • Lecture 1:
    • Ch. 2.9: Intro to stochastic processes (excluding example 2.53) 
    • Start ch. 4.1: Introduction to Markov chains
  • Lecture 2:
    • Finish ch. 4.1
    • Ch. 4.2: Chapman-Kolmogorov equations (excluding pages 193-194, including the Remark on page 194)
  • Lecture 3:
    • Ch. 4.3: Classification of states (excluding the last part of 4.3 from the last 1/3 of page 199, from random-walk in 2 dimensions)
    • Ch. 4.4: Long-run proportions and limiting probabilities
  • Lecture 4:
    • Finish ch. 4.4 (excluding examples 4.24, 4.25, 4.26)
    • Ch. 4.5.1: The gambler's ruin problem
  • Lecture 5:
    • Ch. 4.6: Mean time spent in transient states 
    • Ch. 4.7: Branching processes
  • Lecture 6:
    • Ch. 4.8: Time reversible Markov chains (until example 4.35)
    • Ch. 4.9: Markov Chain Monte Carlo Methods (until example 4.39), with R examples
  • Lecture 7:
    • Ch. 5.2.1: The exponential distribution (excluding example 5.1)
    • Ch. 5.2.2: Properties of the exponential distribution (excluding example 5.5)
  • Lecture 8:
    • Ch. 5.2.3: Further properties of the exponential distribution (excluding examples 5.7, 5.9 and 5.10)
    • Ch. 5.2.4: Convolutions of the exponential random variables (excluding example 5.11)
  • Lecture 9:
    • Ch. 5.3.1: Counting Processes
    • Ch. 5.3.2: Definition of the Poisson Process
    • Ch. 5.3.3: Interarrival and Waiting Time Distributions
  • Lecture 10:
    • Ch. 5.3.4: Further Properties of Poisson Processes (until example 5.16)
    • Ch. 5.3.5: Conditional Distribution of the Arrival Times
  • Lecture 11:
    • Finish Ch. 5.3.5 (excluding examples 5.19, 5.20, 5.21, 5.22)
    • Start Ch. 5.4.1: Nonhomogeneous Poisson Process
  • Lecture 12:
    • Finish Ch. 5.4.1
    • Ch. 5.4.2: Compound Poisson Processes
  • Lecture 13:
    • Ch. 6.1: Introduction to Continuous-time Markov chains
    • Ch. 6.2: Continuous-time Markov chains
    • Ch. 6.3: Birth and Death Processes
  • Lecture 14:
    • Finish Ch. 6.3
    • Ch. 6.4: The Transition Probability Function Pij(t)
  • Lecture 15:
    • Finish Ch. 6.4
  • Lecture 16:
    • Ch. 6.5: Limiting Probabilities (excluding Example 6.16)
    • Ch. 6.8: Uniformization
  • Lecture 17:
    • Ch. 6.9: Computing the Transition Probabilities
    • Ch. 7.1: Renewal Process
    • Ch. 7.2: Distribution of N(t)
  • Lecture 18:
    • Ch. 10.1: Brownian Motion
    • Ch. 10.2: Hitting Times, Maximum Variable, and the Gambler's Ruin Problem
    • Ch. 10.3: Variations on Brownian Motion

 

Publisert 19. jan. 2017 16:01 - Sist endret 19. mai 2017 15:59