Forelesninger / Lectures

  • Lecture 1 (Introduction):
  • Lecture 2 (linear regression and variable transformations):
    • Chapter 2 (§ 2.1)
    • Further material:
  • Lecture 3 (multivariate outcome and computational aspects):
    • Chapter 2 (§ 2.2)
    • Further material:
      • Appendix A.1.
  • Lecture 4 (overview of likelihood-based approaches):
    • Chapter 2 (§ 2.3)
    • Further material:
  • Lecture 5 (logistic regression):
    • Chapter 2 (§ 2.4)
    • Further material:
  • Lecture 6 (optimism, overfitting and bias variance trade-off, cross-validation):
  • Lecture 7 (cross-validation, bootstrapping and information-based criteria):
    • Chapter 3 (§ 3.5)
    • Further material:
  • Lecture 8 (methods for variable selection and principal components):
    • Chapter 3 (§ 3.6)
    • Further material:
  • Lecture 9 (PCR, regularized regression with focus on  lasso and ridge):
    • Chapter 3 (§ 3.6)
    • Chapter 4 (§ 4.1)
    • Further material:
  • Lecture 10 (kNN and kernels methods):
    • Chapter 4 (§ 4.2)
  • Lecture 11 (curse of dimansionality and splines):
    • Chapter 4 (§ 4.3, 4.4)
    • Further material:
  • Lecture 12 (additive models, generalized additive models and projection pursuit):
    • Chapter 4 (§ 4.5, 4.6)
  • Lecture 13 (classification, performance evaluation, multivariate logistic models):
    • Chapter 5 (§ 5.1, 5.2, 5.3)
    • Further material:
  • Lecture 14 (classification via linear model and discriminant analysis, with focus on LDA and QDA):
    • Chapter 5 (§ 5.4, 5.5)
    • Further material:
  • Lecture 15 (regularized approaches for classification):
    • Chapter 5 (§ 5.5)
    • Further material:
      • Elements of Statistical Learning (§ 4.3.1, 4.4.4, 4.4.5)
      • R code
  • Lecture 16 (regression trees):
  • Lecture 17 (classification trees)
  • Lecture 18 (neural networks and support vector machines)
    • Chapter 4 (§ 4.9)
    • Chapter 5 (§ 5.8)
    • Further material:
  • Lecture 19 (case study regression)
    • Chapter 4 (§ 4.10)
  • Lecture 20 (case study regression)
    • Chapter 4 (§ 4.10)
  • Lecture 21 (case study classification)
    • Chapter 5 (§ 5.10)
  • Lecture 22 (case study classification)
  • Lecture 23 (unsupervised learning and dissimilarity)
    • Chapter 6 (§ 6.1)
  • Lecture 24 (non-hierarchical clustering with focus on K-means)
    • Chapter 6 (§ 6.1)
    • Further material:
  • Lecture 25 (hierarchical clustering)
    • Chapter 6 (§ 6.1)
    • Further material:
  • Lecture 26 (case study)
    • Chapter 6 (§ 6.3)
  • Lecture 27 (principal component analysis, multidimensional scaling)
    • Chapter 10.2 of "The Introduction to Statistical Learning"
    • Further material:
  • Lecture 28 (case study)
  • Lecture 29 (simulation of exam)
Publisert 13. jan. 2019 17:47 - Sist endret 15. mars 2023 11:09