MATLAB kommandoer som illustrerer
sentralgrensesetningen (se avsnitt 5.3 i Rice)
% Vi bruker stokastisk
simulering til ? se hvordan fordelingen
til det standardiserte
gjennomsnittet
% avhenger av n og av fordelingen til observasjonene (se den andre obligatoriske
oppgaven for detaljer).
% F?rst trekker vi observasjonene fra den uniforme fordelingen over (0,1)
subplot(2,2,1)
n = 3;
X = unifrnd(0,1,n,10000);
meanX= mean(X);
m=1/2;
s=sqrt(1/12);
Z = sqrt(n)*(meanX-m)/s ;
hist(Z,-4:0.20:4)
title('Uniform n=3')
axis([-4,4,0,1000])
subplot(2,2,2)
n = 10;
X = unifrnd(0,1,n,10000);
meanX= mean(X);
m=1/2;
s=sqrt(1/12);
Z = sqrt(n)*(meanX-m)/s ;
hist(Z,-4:0.20:4)
title('Uniform n=10')
subplot(2,2,3)
n = 30;
X = unifrnd(0,1,n,10000);
meanX= mean(X);
m=1/2;
s=sqrt(1/12);
Z = sqrt(n)*(meanX-m)/s ;
hist(Z,-4:0.20:4)
title('Uniform n=30')
axis([-4,4,0,1000])
subplot(2,2,4)
n = 100;
X = unifrnd(0,1,n,10000);
meanX= mean(X);
m=1/2;
s=sqrt(1/12);
Z = sqrt(n)*(meanX-m)/s ;
hist(Z,-4:0.20:4)
title('Uniform n=100')
axis([-4,4,0,1000])
% S?
trekker vi observasjonene fra eksponentialfordelingen med
lambda=1
n = 3;
X = exprnd(1,n,10000);
meanX= mean(X);
m=1;
s=1;
Z = sqrt(n)*(meanX-m)/s ;
hist(Z,-4:0.20:4)
title('Eksponential n=3')
subplot(2,2,2)
n = 10;
X = exprnd(1,n,10000);
meanX= mean(X);
m=1;
s=1;
Z = sqrt(n)*(meanX-m)/s ;
hist(Z,-4:0.20:4)
title('Eksponential n=10')
axis([-4,4,0,1000])
subplot(2,2,3)
n = 30;
X = exprnd(1,n,10000);
meanX= mean(X);
m=1;
s=1;
Z = sqrt(n)*(meanX-m)/s ;
hist(Z,-4:0.20:4)
title('Eksponential n=30')
axis([-4,4,0,1000])
subplot(2,2,4)
n = 100;
X = exprnd(1,n,10000);
meanX= mean(X);
m=1;
s=1;
Z = sqrt(n)*(meanX-m)/s ;
hist(Z,-4:0.20:4)
title('Eksponential n=100')
axis([-4,4,0,1000])
% Til slutt trekker vi observasjonene fra Bernoulli fordelingen med
p=1/2.
X = binornd(1,0.5,n,10000);
meanX= mean(X);
m=1/2;
s=1/2;
Z = sqrt(n)*(meanX-m)/s ;
hist(Z,-4:0.20:4)
title('Bernoulli n=3')
subplot(2,2,2)
X = binornd(1,0.5,n,10000);
meanX= mean(X);
m=1/2;
s=1/2;
Z = sqrt(n)*(meanX-m)/s ;
hist(Z,-4:0.20:4)
title('Bernoulli n=10')
subplot(2,2,3)
X = binornd(1,0.5,n,10000);
meanX= mean(X);
m=1/2;
s=1/2;
Z = sqrt(n)*(meanX-m)/s ;
hist(Z,-4:0.20:4)
title('Bernoulli n=30')
X = binornd(1,0.5,n,10000);
meanX= mean(X);
m=1/2;
s=1/2;
Z = sqrt(n)*(meanX-m)/s ;
hist(Z,-4:0.20:4)
title('Bernoulli n=100')