Syllabus/achievement requirements

Textbook: Hastie, Trevor, Tibshirani, Robert, Friedman, Jerome: The Elements of Statistical Learning, 2009. 2nd edition, Springer.

Curriculum:

  • Chapter 1: Introduction
    • plus Carmichael & Marron (2018)
  • Chapter 2: Overview of Supervised Learning
  • Chapter 3: Linear Methods for Regression
    • plus Zou (2006)
  • Chapter 5: Basis Expansions and Regularization
  • Chapter 6: Kernel Smoothing Methods
    • plus Hjort & Glad (1995)
  • Chapter 7: Model Assessment and Selection
  • Chapter 8: Model Inference and Averaging
  • Chapter 9: Additive Models, Trees, and Related Methods
  • Chapter 10: Boosting and Additive Trees
    • plus Bühlmann & Yu (2003)
  • Chapter 11: Neural Networks
    • plus Schmidhuber (2015)
  • Chapter 15: Random Forests
  • Chapter 16: Ensemble Learning
  • Chapter 18: High-Dimensional Problems: p>>n
    • plus Meinshauser & Bühlmann (2010)
Published Aug. 10, 2020 10:47 AM - Last modified Aug. 10, 2020 10:47 AM