Messages
Pensum til muntlig eksamen hentes fra
- Kapittel 1-7, 9 og 11
fra forelesningsnotatet spseq.pdf, men beviset for multiplikativitet av Serre-spektralsekvensen (i seksjon 6.4), bevisene i kapitlet om Steenrod-algebraen (kapittel 7), og bevisene for monoidal struktur i Adams-spektralsekvensen (seksjon 11.7-11.11) utelates.
Edvard Aksnes (edvardak@math.uio.no) er tillitsvalgt student.
The lectures will take place online, using Zoom. The passcode is 958021.
The message Dokumenter contains links to my previous and current MAT9580 lecture notes, as well as to some articles and books referenced in the current notes.
I will lecture on the theory and applications of spectral sequences, with particular emphasis on the Adams spectral sequence calculating the stable homotopy groups of spheres.
- What is a spectral sequence?
- Convergence, exact couples
- Products, Cartan-Eilenberg systems
- Homological algebra, derived functors
- The stable homotopy category, orthogonal spectra
- The Adams spectral sequence
- The sphere spectrum
- Topological K-theory
- Bordism
- Topological modular forms