Stable, equivariant and motivic homotopy theory

Possible sources:

  •     Hovey, Mark    Model categories.    Mathematical Surveys and Monographs, 63. American Mathematical Society, Providence, RI, 1999. xii+209 pp.
  •     Schwede, Stefan; Shipley, Brooke E.    Algebras and modules in monoidal model categories.    Proc. London Math. Soc. (3) 80 (2000), no. 2, 491-511.
  •     Hovey, Mark; Shipley, Brooke; Smith, Jeff    Symmetric spectra.    J. Amer. Math. Soc. 13 (2000), no. 1, 149-208.
  •    Jardine, J. F.     Motivic symmetric spectra.     Doc. Math. 5 (2000), 445–552.
  •     Hovey, Mark    Spectra and symmetric spectra in general model categories.    J. Pure Appl. Algebra 165 (2001), no. 1, 63-127.
  •     Mandell, M. A.; May, J. P.; Schwede, S.; Shipley, B.    Model categories of diagram spectra.    Proc. London Math. Soc. (3) 82 (2001), no. 2, 441-512.
  •     Mandell, M. A.; May, J. P.    Equivariant orthogonal spectra and S-modules.    Mem. Amer. Math. Soc. 159 (2002), no. 755, x+108 pp.
  •     Shipley, Brooke    A convenient model category for commutative ring spectra.  Homotopy theory: relations with algebraic geometry, group cohomology, and algebraic K-theory, 473-483,    Contemp. Math., 346, Amer. Math. Soc., Providence, RI, 2004.

I will collect copies of (some of) these in the "documents" folder -- see the left hand menu.

Published Dec. 20, 2017 9:54 AM - Last modified Nov. 20, 2024 3:26 PM