Stable, equivariant and motivic homotopy theory
Possible sources:
- Hovey, Mark Model categories. Mathematical Surveys and Monographs, 63. American Mathematical Society, Providence, RI, 1999. xii+209 pp.
- Schwede, Stefan; Shipley, Brooke E. Algebras and modules in monoidal model categories. Proc. London Math. Soc. (3) 80 (2000), no. 2, 491-511.
- Hovey, Mark; Shipley, Brooke; Smith, Jeff Symmetric spectra. J. Amer. Math. Soc. 13 (2000), no. 1, 149-208.
- Jardine, J. F. Motivic symmetric spectra. Doc. Math. 5 (2000), 445–552.
- Hovey, Mark Spectra and symmetric spectra in general model categories. J. Pure Appl. Algebra 165 (2001), no. 1, 63-127.
- Mandell, M. A.; May, J. P.; Schwede, S.; Shipley, B. Model categories of diagram spectra. Proc. London Math. Soc. (3) 82 (2001), no. 2, 441-512.
- Mandell, M. A.; May, J. P. Equivariant orthogonal spectra and S-modules. Mem. Amer. Math. Soc. 159 (2002), no. 755, x+108 pp.
- Shipley, Brooke A convenient model category for commutative ring spectra. Homotopy theory: relations with algebraic geometry, group cohomology, and algebraic K-theory, 473-483, Contemp. Math., 346, Amer. Math. Soc., Providence, RI, 2004.
I will collect copies of (some of) these in the "documents" folder -- see the left hand menu.
Published Dec. 20, 2017 9:54 AM
- Last modified Nov. 20, 2024 3:26 PM