Undervisningsplan

DatoUndervises avStedTemaKommentarer / ressurser
22.08.2011SHC? B91? Introduction? Prerequisites. Goals. Notations. Examples of PDEs. Laplace equation. Fundamental solution. §2.1 and 2.2.1.a.?
23.08.2011SHC? B62? Poisson equation? Integral formula for Poisson equation on R^n and mean value property. §2.2.1.b and 2.2.2.?
29.08.2011? ? Lebesgue integral.? Facts about Lebesgue integral. Appendix E.?
30.08.2011? ? Regularity and maximum principle.? Smoothing by convolution. Appendix C.4. Regularity. Maximum principle, uniqueness. §2.2.3.a-b.?
05.08.2011? ? Estimates on derivatives. Exercises. ? Exercises in Notes_1. §2.2.3.c.?
06.09.2011? ? Analyticity. Exercises. ? Exercises in Notes_2. §2.2.3.d-e.?
12.09.2011? ? Green's functions, Dirichlet's principle.? Motivation, definition and examples of Green's functions. Dirichlet's principle. §2.2.4 and §2.2.5.?
13.09.2011? ? Weak derivatives? Weierstrass' critique of Dirichlet's principle. §5.2.1.?
19.09.2011? ? Sobolev spaces? Weak derivatives, definition of Sobolev spaces, elementary properties. §5.2.?
20.09.2011? ? Density of smooth functions? Density of smooth functions in Sobolev spaces. §5.3, §C.1?
26.09.2011? ? Density of smooth functions? Density of smooth functions continued. Absolutely continuous functions on R.?
27.09.2011? ? Traces? Traces on the boundary. §5.5.?
03.10.2011? ? Integration on boundaries? Background material: C^1 boundaries, partitions of unity, integration on graphs.?
04.10.2011? ? Stokes theorem? Background material: Stokes theorem on C^1 domains, with proof.?
10.10.2011? ? Hilbert spaces? Projection on closed convex sets. Riesz representation theorem. §D.1-3.?
14.10.2011? B62? NB: fredag 12-14? Poincaré inequality (for Dirichlet boundary condition). Lax-Milgram. Second order elliptic equations on domains. §6.1 and 6.2.1.?
17.10.2011? ? Exercises? On projections in Hilbert spaces. For next time, Ex §5: 4,8,9,14.?
18.10.2011? ? Extensions and traces? Extension by zero, Sobolev preserving extension. §5.4, 5.5.?
24.10.2011? ? Compact operators? Definition (§D.5). The operator norm limit of compact operators is compact. Compactness of the injection of W^{1,p} into L^p. §5.7.?
25.10.2011? ? Neumann boundary condition? Poincaré inequality §5.8.1. Laplace equation with Neumann boundary condition.?
30.11.2011? ? ? Help with the compulsory exercises (oblig).?
01.11.2011? ? ? Work on the compulsory exercise! No teaching.?
07.11.2011? ? Exercises, Poincaré inequalities.? Exercises. A general theorem yielding various Poincaré inequalities.?
08.11.2011? ? Fredholm alternative.? Energy estimates, Fredholm alternative. §6.2.?
14.11.2011? ? Sobolev inequality? §5.6.1?
15.11.2011? ? Sobolev inequality? continued. Remarks on the compulsory exercise.?
21.11.2011? ? Elliptic regularity? §5.8.2 Difference quotients. §6.3 Regularity.?
22.11.2011? ? Exercises? ?
28.11.2011? ? Year summary? ?
29.11.2011? ? Last lecture? ?
Published Aug. 19, 2011 7:33 PM - Last modified Nov. 25, 2011 4:21 PM