from numpy import * import matplotlib.pyplot as plt # Chapter 1 def trifactor(a, d, c): """ Compute the entries in the LU-factorization of a tridiagonal matrix A using algorithm 1.8. Returns the sequence l on the sub-diagonal of L, and the sequence u on the diagonal of U. a: The n-1 entries on the sub-diagonal of A d: The n entries on the diagonal of A c: The n-1 entries on the super-diagonal of A """ u, l = zeros_like(d), zeros_like(a) u[0] = d[0] for k in range(len(a)): l[k] = a[k]/u[k] u[k+1] = d[k+1] - l[k]*c[k] return l, u def trisolve(l, u, c, b): """ Compute the solution to a system on the form A*x=b with A a tridiagonal matrix, based on the LU-factorization of A as given by the function trifactor (using algorithm 1.9). The input vector b will be updated with the solution x (i.e. in-place). l: The entries on the sub-diagonal of L in the LU-factorization of A u: The entries on the diagonal of U in the LU-factorization of A c: The entries on the super-diagonal of U in the LU-factorization of A (this equals the entries on the super-diagonal of A) b: The right hand side """ n = shape(b)[0] for k in range(1, n): b[k] -= l[k-1]*b[k - 1] b[n-1] /= u[n-1] for k in range(n-2,-1,-1): b[k] -= c[k]*b[k + 1] b[k] /= u[k] def splineint(a, b, y, mu1, munp1): """ Use algorithm 1.19 to solve the D_2 spline problem. Returns the left end points of all sub-inetrvals, and a matrix holding all coefficients in all the piecewise cubic polynomials (one row for each piecewise polynomial) a: The left end point of the interval b: The rigth end point of the interval y: The values at the interpolation points mu1 and munp1: Initial conditions/moments. """ n = len(y) - 1 h = (b - a)/float(n) c, d = ones(n - 2), 4*ones(n - 1) l ,u = trifactor(c, d, c) b1 = (6/h**2)*(y[2:(n + 1)] - 2*y[1:n] + y[:(n - 1)]) b1[0] -= mu1 b1[n - 2] -= munp1 trisolve(l, u, c, b1) mu2ton = b1 mu = zeros(n + 1) mu[0] = mu1 mu[1:n] = mu2ton mu[n] = munp1 C = array(zeros((n, 4))) # Apply lemma 1.3 to obtain the coefficient matrix C[:, 0] = y[:n] C[:, 1] = (y[1:(n+1)] - y[:n])/h - h*mu[:n]/3-h*mu[1:(n+1)]/6 C[:, 2] = mu[:n]/2 C[:, 3] = (mu[1:(n + 1)] - mu[0:n])/(6*h) C = matrix(C) return linspace(a, b - h, n), C def findsubintervals (t ,x): """ Use algorithm 1.21 to return an index set for the points in x, saying which intervals they belong to. t: the start points of the intervals x: The points to find the interval indices for. """ k, m = len(t), len(x) if k<2: return zeros(m,1) else: j = concatenate([t, x]).argsort() i = nonzero(j >= k) arr = arange(0,m) arr = i - arr - 1 arr = arr[0] return arr def splineval(x,C,X): """ Use algorithm 1.22 to compute and return the values of a cubic spline (x, C) at points X. (x, C) can be obtained with the function splineint. x: The start points of the intervals. C: A matrix holding all coefficients in all the piecewise cubic polynomials (one row for each piecewise polynomial) X: The points we want to evaluate for the spline """ m = len(X) i = findsubintervals(x,X) G = zeros(m) for j in range(m): k = i[j] t = X[j] - x[k] G[j]=C[k,:]* t**array([[0],[1],[2],[3]]) return G # Chapter 2 def rforwardsolve(A, b, d): """ Solve the system A*x = b for a lower triangular d-banded matrix A, using algorithm 2.6 (row-oriented forward substitution) The input vector b will be updated with the solution x (i.e. in-place). A: A lower triangular matrix b: The right hand side d: The band-width """ n = len(b) b[0] /= A[0, 0] for k in range(1,n): lk = array([0,k-d]).max() b[k] = b[k] - dot(A[k, lk:k],b[lk:k]) b[k] /= A[k, k] def rbacksolve(A, b, d): """ Solve the system A*x = b for an upper triangular d-banded matrix A, using algorithm 2.7 (row-oriented backward substitution) The input vector b will be updated with the solution x (i.e. in-place). A: An upper triangular matrix b: The right hand side d: The band-width """ n = len(b) b[n - 1] /= A[n - 1,n - 1] for k in range(n-2,-1,-1): uk = array([n, k + d + 1]).min() b[k] = b[k] - dot(A[k,(k+1):uk], b[(k+1):uk]) b[k] /= A[k,k] def cforwardsolve(A, b, d): """ Solve the system A*x = b for a lower triangular d-banded matrix A, using algorithm 2.9 (column-oriented forward substitution) The input vector b will be updated with the solution x (i.e. in-place). A: A lower triangular matrix b: The right hand side d: The band-width """ A = matrix(A) n = len(b) for k in range(n-1): b[k] /= A[k, k] uk = array([n, k + d + 1]).min() b[(k+1):uk] -= A[(k+1):uk, k]*b[k] b[n - 1] /= A[n - 1,n - 1] def cbacksolve(A, b, d): """ Solve the system A*x = b for a upper triangular d-banded matrix A, using algorithm 2.10 (column-oriented backward substitution) The input vector b will be updated with the solution x (i.e. in-place). A: An upper triangular matrix b: The right hand side d: The band-width """ A = matrix(A) n = len(b) for k in range(n - 1,0,-1): b[k] /= A[k, k] lk = array([0, k - d]).max() b[lk:k] -= (A[lk:k, k]*b[k]) b[0] /= A[0,0] # Algorithm 2.18 def L1U(A, d): """ Compute the L1U-factorization of the d-banded matrix A. Returns a lower triangular matrix L with with ones on the diagonal, and an upper triangular matrix U. Note that, for d=1, the algorithm is equivalent to trisolve. A: A matrix d: The band-width """ n = shape(A)[0] L = eye(n) U = matrix(zeros((n,n))); U[0,0] = A[0,0] for k in range(1,n): km = array([0, k - d]).max() if km < k: L[k, km:k] = A[k, km:k] rforwardsolve(U[km:k, km:k].T, L[k, km:k].T, d) # L U[km:(k + 1), k] = A[km:(k + 1), k] rforwardsolve(L[km:(k + 1), km:(k + 1)], U[km:(k + 1), k], d) # U return L, U def L1Uv2(A, d): """ Compute the L1U-factorization of the d-banded matrix A. This is more advanced than L1U in the sense that it avoids allocation of new arrays: The result is stored directly in A (i.e. in-place), i.e. overwriting the previous A. The entries in A and U are at the same places in A, and the diagonal with ones in L is not stored in A. In order to achieve this, we can't use the function rforwardsolve, as L1U uses it (due to the special form with ones on the diagonal). A: A matrix d: The band-width """ n = shape(A)[0] for k in range(1,n): km = array([0, k - d]).max() # First index of r we need to update for r in range(km, k - 1): A[k, r] /= A[r, r] uk = array([k, r + d + 1]).min() # last index not included A[k, (r + 1):uk] -= A[r, (r + 1):uk]*A[k, r] A[k, k - 1] /= A[k - 1,k - 1] for r in range(km, k): uk = array([k + 1, r + d + 1]).min() # last index not included A[(r + 1):uk, k] -= A[(r + 1):uk, r]*A[r, k] # Chapter 3 def LDL(A, d): """ Find the LDL factorization of the hermitian matrix A, using algorithm 3.4 A: A hermitian matrix d: The band-width """ n = shape(A)[0] L = array(eye(n)) dg = zeros(n) dg[0] = A[0, 0] for k in range(1, n): m = reshape(array(A[:k, k].copy()), k) rforwardsolve(L[:k, :k], m, d) L[k, :k] = m/dg[:k] dg[k] = A[k, k] - dot(L[k, :k], m) return L, dg def bandcholesky(A, d): """ Find the Cholesky factorization of the positive definite matrix A, using algorithm 3.13 A: A positive definite matrix d: The band-width """ L, dg = LDL(A, d) return matrix(L)*diag(sqrt(dg)) def bandsemicholeskyL(A, d): """ Find the Cholesky factorization of the positive semidefinite matrix A, using algorithm 3.24 The input matrix A will be changed by this method A: A positive semidefinite matrix d: The band-width """ n = shape(A)[0] for k in range(n): if A[k,k] > 0: kp=array([n, k + 1 + d]).min(); A[k,k] = sqrt(A[k,k]) A[(k+1):kp, k] =A [(k+1):kp, k]/A[k, k] for j in range(k+1, kp): A[j:kp, j] = A[j:kp, j] - A[j, k]*A[j:kp, k] else: A[k:kp, k] = 0 return tril(A) # Chapter 4 def housegen(x): """ Return u and a in Theorem 4.16, using algorithm 4.17 x: The vector to reflect on ae_1 """ a = linalg.norm(x) if a == 0: u=x; u[0]=sqrt(2); return u, a if x[0] == 0: r = 1 else: r =x[0]/abs(x[0]) u = conj(r)*x/a u[0]=u[0]+1 u=u/sqrt(u[0]) a=-r*a return u, a def housetriang(A, B): """ Return R, C so that R is upper trapezoidal and resulting from a series of Householder transformations to A, and C so that it results from applying the same series of Householder transformations to B. This is algorithm 4.21 A: The matrix to apply Householder transformations to, in order to transform it to upper trapezoidal form. B: The matrix to apply the same Householder transformations to. """ m, n = shape(A); r = shape(B)[1] ; A=hstack([A,B]); minval = array([n, m - 1]).min() for k in range(minval): v, A[k, k] = housegen(A[k:m, k]) v = matrix(reshape(v, (m - k, 1))) C = A[k:m, (k+1):(n+r)] ; A[k:m, (k + 1):(n + r)] = C - v*(v.T*C) R = triu(A[:, :n]); C = A[:, n:(n + r)] return R, C def rothesstri(A, b): """ Solve the system Ax=b where A is in upper Hessenberg form using Givens rotations, using algorithm 4.36 A: A matrix in upper Hessenberg form. b: The right hand side. """ n = shape(A)[0] A = hstack([A, b]) for k in range(n-1): r = linalg.norm([ A[k , k] , A[k + 1, k] ]) if r>0: c=A[k, k]/r; s=A[k + 1, k]/r A[[k, k + 1],(k + 1):(n + 1)]=[[c, s],[-s, c]]*A[[k, k + 1],(k + 1):(n + 1)] A[k, k] = r; A[k+1,k] = 0 z = A[:, n].copy() rbacksolve(A[:, :n], z, n) return z # testcode def _test_chap1(): print 'Testing all 5 algorithms from chapter 1 with a spline plot' xplot = linspace(0,1,101) xknot = linspace(0,1,11) yknot = xknot**4 xknot, C = splineint(0, 1, yknot, 0, 12) # xknot is reduced with one in size G = splineval(xknot, C, xplot) plt.plot(xplot,G) plt.show() def _test_chap2(): print 'Testing all algorithms from chapter 2' n = 10 d = 9 b = random.random((n,1)) print 'Testing rforwardsolve' A = matrix(zeros((n, n))) for k in range(n): for s in range(d+1): if k+s < n: A[k + s, k] = random.random() bcopy = b.copy() rforwardsolve(A, bcopy, d) xver = linalg.solve(A,b) assert abs(xver-bcopy).max() < 1E-4, 'rforwardsolve failed' print 'Testing cforwardsolve' bcopy = b.copy() cforwardsolve(A, bcopy, d) assert abs(xver-bcopy).max() < 1E-4, 'cforwardsolve failed' b = random.random((n,1)) print 'Testing rbacksolve' A = zeros((n, n)) for k in range(n): for s in range(d + 1): if k+s < n: A[k, k + s] = random.random() bcopy = b.copy() rbacksolve(A, bcopy, d) xver = linalg.solve(A,b) assert abs(xver-bcopy).max() < 1E-4, 'rbacksolve failed' print 'Testing cbacksolve' bcopy = b.copy() cbacksolve(A, bcopy, d) assert abs(xver-bcopy).max() < 1E-4, 'cbacksolve failed' print 'Testing L1U' A = matrix(zeros((n, n))) for k in range(n): for s in range(n): if abs(k-s) <= d: A[k, s] = random.random() x = matrix(random.random((n, 1))) L, U = L1U(A, d) assert abs(L*U*x -A*x).max() < 1E-4, 'L1U failed' print 'Testing L1Uv2' Acopy = A.copy() L1Uv2(Acopy, d) for k in range(n): assert abs(Acopy[k,k] - U[k, k]) < 1E-4, 'L1Uv2 failed' for l in range(k): assert abs(Acopy[k,l] - L[k, l]) < 1E-4, 'L1Uv2 failed' assert abs(Acopy[l,k] - U[l, k]) < 1E-4, 'L1Uv2 failed' def _test_chap3(): print 'Testing LDL' n = 10 d = 9 A = matrix(zeros((n, n))) for k in range(n): for s in range(k + 1): if abs(k-s) <= d: A[k, s] = random.random() A[s, k] = A[k, s] L, dg = LDL(A, d) L = matrix(L) dg = diag(dg) newmatr = L*matrix(dg)*L.T assert abs(A - newmatr).max() < 1E-4, 'LDL failed' print 'Testing bandcholesky' A = matrix(zeros((n, n))) for k in range(n): for s in range(k + 1): if abs(k-s) <= d: A[s, k] = random.random() A = matrix(A)*matrix(A).T L = bandcholesky(A, d) L = matrix(L) newmatr = L*L.T assert abs(A - newmatr).max() < 1E-4, 'bandcholesky failed' print 'Testing bandsemicholeskyL' Acopy = A.copy() L = bandsemicholeskyL(Acopy, d) L = matrix(L) newmatr = L*L.T assert abs(A - newmatr).max() < 1E-4, 'bandsemicholeskyL failed' def _test_chap4(): print 'Testing housegen and housetriang' A = array([[1,3,1],[1,3,7],[1,-1,-4],[1,-1,2]]) R, C = housetriang(A,eye(4)) assert abs(matrix(linalg.inv(C))*R - A).max() < 1E-4, 'housetriang failed' n = 10 print 'rothesstri' A = matrix(zeros((n, n))) for k in range(n): for s in range(k + 2): if s < n: A[s, k] = random.random() b = random.random((n,1)) xexact = linalg.solve(A, b) x = rothesstri(A, b) assert abs(x - xexact).max() < 1E-4, 'rothesstri failed' if __name__=='__main__': _test_chap1() _test_chap2() _test_chap3() _test_chap4()