
IN115 − Forelesning 7. april, 2000

Vår 2000 1 of 6

Dagens plan
• kort repetisjon av amortisering

• paradigmer for design av algoritmer



IN115 − Forelesning 7. april, 2000

Vår 2000 2 of 6

Fundamental techniques:
DIVIDE AND CONQUER
Divide and conquer is a general metodology
for using recurence to design efficient
algorithms. It is based on dividing a particular
problem into one or more subproblems of the
smaller size which are then recursively
solved, and then the solutions are “merged”
into the solution of the original problem.
Exemples:

• binary search

• quick sort

•merge sort



IN115 − Forelesning 7. april, 2000

Vår 2000 3 of 6

Dynamic programming
Dynamic programming is another technique
for designing data structures and algorithms,
a bit more difficult to understand than
divide-and-conquer. It is a technique to try
when it seems that the problem on hand is
exponential time, optimization problem.
Dynamic programming yields a polynomial
time algorithm, usually very easy to code. The
problem must have some structure that we
can exploit to obtain this simple solution.



IN115 − Forelesning 7. april, 2000

Vår 2000 4 of 6

• simple subproblems: there has to be a way
of breaking the problem into subproblems
and defining them with few indices

• subproblem optimization: an optimal
solution to global problem must be a
composition of optimal subproblem
solutions.

• subproblem overlap: optimal solutions to
unrelated problems can contain
subproblems in common



IN115 − Forelesning 7. april, 2000

Vår 2000 5 of 6

Eksamples:

• Floyd-Warshals transitive closure
algorithm

•matrix chain product

• 0-1 Knapsack problem

• the longest common subsequence
problem



IN115 − Forelesning 7. april, 2000

Vår 2000 6 of 6

Greedy method
Exemples:

• Dijkstra

• Prim

• Kruskal

•Huffman coding

As dynamic programming, the greedy
method is applied to optimization problems.
In order to solve the problem one proceeds
with the sequence of choices, localy
optimizing at every step. The method does
not always work, buut it works for problems
that possess the “greedy property” which is
that the global optimum can be found by a
series of local optimizations.


