
Real life examples

(a bit disguised and a lot simplified)

• Some may seem too trivial to mention

• But they did happen in companies with well

educated people

• So please bear with me!

Copyright © 2015 Accenture All Rights Reserved.

Copyright © 2015 Accenture All Rights Reserved.

’Dishonest’ Queries

Most commonly used with COBOL

Example:

• A search dialog allows the user to enter an optional value-requirement
for a column, eg a date. (Single value or value-range.)

• One query is used for several input-combinations:
”…AND SOME_DATE BETWEEN :DAY1 AND :DAY2…”

• During statement parsing DB2 decides that the best access method is
index range scan using an index on SOME_DATE

• If the user enters no requirements for this column, the query is executed
with paremeter values DAY1 = ’0001-01-01’ and DAY2 = ’9999-12-31’.

• What will happen? (Assume a table with several million rows).

Copyright © 2015 Accenture All Rights Reserved.

Why does not the SQL use the index?

WHERE POSTADRESSE LIKE ‘%:E’

Change default to “Starts with”, and the SQL will be

WHERE POSTADRESSE LIKE ‘:E%’

Copyright © 2015 Accenture All Rights Reserved.

Indexable Predicates revisited

Not indexable:

Parameter-driven
comparator selection

in SQL

…AND TIDSPKT_REG > :T

AND (CASE
WHEN :E = ‘ ‘

THEN ENHET_BEHAND

ELSE :E

END) = ENHET_BEHAND…

Indexable:

Parameter-driven
query selection in

program

Query for E = ‘ ‘:

…AND TIDSPKT_REG > :T…

Query for other values of E:

…AND TIDSPKT_REG > :T

AND ENHET_BEHAND = :E

Copyright © 2015 Accenture All Rights Reserved.

Bad performance may be a symptom of

incorrect logic

Bad performance:

select …
from T_YTELSE

where dato_ytel_iver_tom >= ?
or dato_ytel_iver_tom is null

and er_gyldig = '1’
and forhold_id = ?

Did we really mean:
where dato_ytel_iver_tom >= ?

or (dato_ytel_iver_tom is null
and er_gyldig = '1’
and forhold_id = ?)

…or perhaps:
where (dato_ytel_iver_tom >= ?

or dato_ytel_iver_tom is null)
and er_gyldig = '1’
and forhold_id = ?

Both performance and returned data may be totally different!

Q: Why are some executions of same

query a lot slower than others?

A: Uneven key distributions!

Select x

from t

where y = :A

START_TIME SQL INDB2_TIME INDB2_CPU GETPAGE

08:44:36.946 124 01:09 00:03 431984

08:54:14.527 124 01:02 00:02 225995

09:05:41.789 124 00:26 00:03 431986

09:05:41.249 124 01:06 00:02 221913

09:18:41.141 124 01:02 00:02 221914

Copyright © 2015 Accenture All Rights Reserved.

Verdi Antal treff

<blank> 4 480 731

80000427901 109 197

80000438148 104 277

80000345435 103 698

80000423362 65 882

80000438116 17 744

80000432839 16 871

80000438118 14 053

80000366238 12 171

80000438132 11 171

80000364458 5

Y # rows

Question: Why are these straight-forward

deletes so expensive?

delete

from T_SJEKKLISTE

where SJEKKLISTE_ID = ?

Yes, we have unique index

on SJEKKLISTE_ID!

Copyright © 2015 Accenture All Rights Reserved.

SQL_TEXT USE COUNT TIMEPCT CPUPCT INDB2_TIME INDB2_CPU GETPAGE

delete from T_SJEKKLISTE where > 94 7,24 % 11,07 % 02:24 00:42 247 500

select oppgavedo0_.OPPGAVE_ID a> 1756 5,26 % 3,67 % 01:45 00:14 606 980

select oppgavedo0_.OPPGAVE_ID a> 1758 5,21 % 3,63 % 01:44 00:13 587 916

select oppgavedo0_.OPPGAVE_ID a> 313 4,43 % 3,47 % 01:28 00:13 624 083

select oppgavedo0_.OPPGAVE_ID a> 262 4,67 % 3,38 % 01:33 00:12 639 818

select oppgavedo0_.OPPGAVE_ID a> 1287 3,57 % 3,36 % 01:11 00:12 559 517

select oppgavedo0_.OPPGAVE_ID a> 1158 2,98 % 3,03 % 00:59 00:11 498 704

Answer: Because another table has a

foreign key without index support
SELECT F.COLSEQ

,F.COLNAME

FROM SYSIBM.SYSRELS R

,SYSIBM.SYSFOREIGNKEYS F

WHERE R.CREATOR = 'GS606P'

AND R.TBNAME = 'T_OPPGAVE'

AND R.REFTBNAME =
'T_SJEKKLISTE'

AND F.CREATOR = R.CREATOR

AND F.TBNAME = R.TBNAME

AND F.RELNAME = R.RELNAME

Copyright © 2015 Accenture All Rights Reserved.

TABLE INDEX TB_SEQ_GP TB_IDX_GP IS_GETP IS_TBGETP

T_SJEKKLISTE_LINJE XIE21VEC 2,0 0,0

T_SJEKKLISTE_KOLONNE XIE21X7B 2,0 0,0

T_SJEKKLISTE XPKTRSJE 4,0 1,8

T_SJEKKLISTE 0,0 1,8

T_OPPGAVE 2 645,6 0,0

COLSEQ COLNAME

1 SJEKKLISTE_ID

The product of two numbers

• Not a very large number (1):
– A batch executed a correlated subquery

without index support.

– Full table scan of 3 400 pages on every
execution.

– No disaster for a batch.

• Not a very large number (2):
– The subquery was executed 110 000

times during each run of the batch.

– Does not seem unreasonable for a
batch

• A large number: (1) X (2)
– Each batch run did 374 million page

gets for this table

– Execution time for each run exceeded
2,5 hours

– A disaster for this batch. Unable to
complete in batch-window

• A smaller factor:
– Created new index tailored for the

subquery

– Now 3 page gets per subquery
execution

• A smaller product:
– 330 000 page gets for this table/index

during a batch run

– Execution time now 15 minutes

Copyright © 2015 Accenture All Rights Reserved.

Copyright © 2015 Accenture All Rights Reserved.

Redundancy is sometimes required…

Find payments with a certain
‘current’ status

1. Normalized tables:

SELECT …

FROM PAYMENT P

INNER JOIN PAYMENT_STATUS S

ON P.PAYMENT_ID = S.PAYMENT_ID

WHERE S.STATUS_CODE = :H

AND S.STATUS_TIME =

(SELECT MAX(S2.STATUS_TIME)

FROM PAYMENT_STATUS S2

WHERE S2.PAYMENT_ID = S.PAYMENT_ID)

2. Redundant column
CURRENT_STATUS_CODE:

SELECT P.PAYMENT_ID

FROM PAYMENT P

WHERE P.CURRENT_STATUS_CODE = :H

• Assume:

– Each payment has an average of 4 status-
history rows.

– Status-history contains 1 million rows with
requested status value.

– Requested value is most recent status for
1000 payments.

• Result:
– With normalized tables and reasonable

indexing we will need 2 – 5 million getpage
operations to retrieve 1000 rows.

– With redundant copy of current status and
reasonable indexing we will need 2000 –
3000 getpage operations to retrieve 1000
rows.

…good understanding of data patterns

may be even better…

Find task items on active tasks
where approval is pending

SELECT …

FROM TASK T

INNER JOIN TASK_STATUS S

ON S.TASK_ID = T.TASK_ID

INNER JOIN TASK_ITEM I

ON I.TASK_ID = T.TASK_ID

WHERE I.APPROVAL = ’PEND’

AND S.STATUS_CODE = ’ACTV’

AND S.STATUS_TIME =

(SELECT MAX(S2.STATUS_TIME)

FROM TASK_STATUS S2

WHERE S2.TASK_ID

= S.TASK_ID)

• Database skills:
– Redundancy may help a lot

• Application skills:
– Only active tasks have items with

pending approval

– Even most active tasks have no
items with pending approval

• Combined skills:
– Best solution is a new index on

task_item with key ‘approval‘

Copyright © 2015 Accenture All Rights Reserved.

… and synergy of creative minds may be

best

Order-status history with

sequence numbers:

SELECT …

FROM ORDER O

INNER JOIN ORDER_STATUS S

ON S.ORDER_ID = O.ORDER_ID

WHERE S.STATUS_CODE = ‘READY’

AND S.SEQ_NO =

(SELECT MAX(S2.SEQ_NO)

FROM ORDER_STATUS S2

WHERE S2.ORDER_ID = S.ORDER_ID)

• Database skills:
– Redundancy may help a lot

• Application skills:
– Why not change the rules:

Always use SEQ_NO = 9999
for current status of an order

• Agreed result:

SELECT …
FROM ORDER O
INNER JOIN ORDER_STATUS S

ON S.ORDER_ID = O.ORDER_ID
WHERE S.STATUS_CODE = ‘READY’
AND S.SEQ_NO = 9999

Copyright © 2015 Accenture All Rights Reserved.

13Copyright © 2008 Accenture All Rights Reserved.

Connection statement cache

• A DBMS must translate the SQL statements sent to it. This is a CPU-demanding

process (finally…. till now we have mostly looked at IO and memory….).

– Load into shared pool

– Syntax parse (correct SQL as such)

– Semantic parse (are all table & column names correct, check dictionary)

– Optimisation (create access plan with info from db statistics)

– Create executable

• You may set up each connection with a cache of SQL statements already translated,.

• Requires the SQL to be exact the same. Is case sensitive. Must use bind variables,

not values.

select order_id, account_id

from order_item

where account_id = :OrderId

select order_id, account_id

from order_item

where account_id = 158293

select Order_Id, Account_Id

from Order_Item

where Account_Id = :OrderId

Does not

match

neither

• Hint: Always user bind variables, even

when you work with a constant. And

use the same variable name

Copyright © 2015 Accenture All Rights Reserved.

Search for exceptional values

DB2 Catalog info:

• SYSTABLES:
1 million rows in table.

• SYSINDEXES:
2 distinct key values for index on
STATUS_CODE

• SYSCOLDIST for
STATUS_CODE values:

– 99.99% ’NORMAL’

– 0.01% ’SPECIAL’

Probable access path
selection:

Sequential scan of table or clustering
index:

…WHERE STATUS_CODE = ?

Index lookup on STATUS_CODE:

…WHERE STATUS_CODE
= ’SPECIAL’

Controlling data growth

• Data growth may not

impact transaction

performance

significantly if

– Number of accessed

rows per transaction is

stable anyway

– Every SQL is supported

by indices that will hit

only requested rows

• But real life is often

different. In this case:

– Some queries did

sequential scans of

entire tables or indices

– One query accessed all

rows in table x and

joined them with other

tables

Copyright © 2015 Accenture All Rights Reserved.

Growing backlog for archive/delete of

outdated information

Copyright © 2015 Accenture All Rights Reserved.

Avg CPU per Transaction

Copyright © 2015 Accenture All Rights Reserved.

Can I predict the execution sequence of a

compound statement?

• No sequence granted, but most likely something like:

select mandatory1.x (7)
,optional.y

from mandatory1 (2 or 3)
inner join mandatory2 (3 or 2)

on mandatory1.z = mandatory2.z
left outer join optional (4)

on optional.u = mandatory2.u
where mandatory2.w = ?
and mandatory1.a in

(non-correlated subselect) (1)
and exists (correlated subselect)(5)

order by mandatory.x (6)

