Real life examples
(a bit disguised and a lot simplified)

« Some may seem too trivial to mention

 But they did happen in companies with well
educated people

* S0 please bear with me!

Copyright © 2015 Accenture All Rights Reserved.

‘Dishonest’ Queries
Most commonly used with COBOL

Example:

A search dialog allows the user to enter an optional value-requirement
for a column, eg a date. (Single value or value-range.)

* One query is used for several input-combinations:
”...AND SOME_DATE BETWEEN :DAY1 AND :DAY2...”

 During statement parsing DB2 decides that the best access method is
Index range scan using an index on SOME_DATE

* If the user enters no requirements for this column, the query is executed
with paremeter values DAY1 =°0001-01-01" and DAY2 ='9999-12-31".

« What will happen? (Assume a table with several million rows).

Copyright © 2015 Accenture All Rights Reserved.

Why does not the SQL use the index?

Du er logget inn som: Sirl Saksbehandler 11/ Enhet Logg ut

—

I Oppgavelisten If Fensjonsovarsikl f Brukenoversikd I Hjelp f Rettskalder

Sgke person Sek nanm eller adresse Begrens sihm med)
Tilbake & |Fomawm /Etlemam | | Fodselsdato ddmmasss Fodselsir || ELEER
v N : {
| Bostedsadresse | M| N Konn | [ukient =] Mav-enhet | |
Sk annen adresse Begrens sihet e
| e ||Pns1adre-ss-e = £ [innenoider =] |
S@k fadselsdato _ Begrens s#ket med
| o |Fads¢|sdatn ddmmaid Kjann | ||l.|lcient 1'I
Amiire sk)))
| & |Fadselsnummer € |Utenjandsk kontonummer |
I C |Mnrskknntanummer C Ursn:landsl-c id |
<

WHERE POSTADRESSE LIKE ‘%:E’

Change default to “Starts with”, and the SQL will be
WHERE POSTADRESSE LIKE “E%’

Copyright © 2015 Accenture All Rights Reserved.

Indexable Predicates revisited

Not indexable:

Parameter-driven
comparator selection
INn SQL

...AND TIDSPKT_REG > :T

AND (CASE
WHEN :E = *°
THEN ENHET_BEHAND

ELSE :E
END) = ENHET_BEHAND...

Copyright © 2015 Accenture All Rights Reserved.

Indexable:

Parameter-driven
guery selection In
program

Query forE="“*
..AND TIDSPKT REG > :T...

Query for other values of E:
...AND TIDSPKT_REG >:T
AND ENHET_ BEHAND = :E

Bad performance may be a symptom of
Incorrect logic

Bad performance: Did we really mean:

where dato_ytel iver tom >=7?
select ... or (dato_ytel iver tom is null
from T_YTELSE ang e hgwlgd ="
where dato_ytel iver_tom >= ? andtornhoia_t =7)
or dato_ytel_iver_tom is null
and er_gyldig

’r .
and forhold _id ? .- OF perhaps

Where (dato_ytel iver_tom >=?

or dato_ytel iver_tom is nuII)
and er_gyldig ="

and forhold_id =7

Both performance and returned data may be totally different!

Copyright © 2015 Accenture All Rights Reserved.

Q: Why are some executions of same

guery a lot slower than others?
A: Uneven key distributions!

Select x

f r Om t Y # rows

— o <blank> 4 480 731

where Yy = - A 80000427901 109 197

80000438148 104 277

80000345435 103 698

START TIME SQL INDB2_TIME INDB2 CPU GETPAGE 80000423362 65 882
08:44:36.946 124 01:09 00:03 431984

08:54:14.527 124 01:02 00:02 225995 80000438116 17744

09:05:41.789 124 00:26 00:03 431986 80000432839 16 871

09:05:41.249 124 01:06 00:02 221913 80000438118 14 053

09:18:41.141 124 01:02 00:02 221914 80000366238 12 171

80000438132 11171

80000364458 5

Copyright © 2015 Accenture All Rights Reserved.

Question: Why are these straight-forward
deletes so expensive?

delete . .
from T SJEKKLISTE Yes, we have unique index
where SJEKKLISTE ID = ? on SJEKKLISTE ID!
SQL_TEXT USE COUNT TIMEPCT CPUPCT INDB2_TIME INDB2_CPU GETPAGE
delete from T_SJEKKLISTE where 94 7,24 %| 11,07 % 02:24 00:42 247 500
select oppgavedo0_.OPPGAVE_ID & 1756 5,26 % 3,67 % 01:45 00:14 606 980
select oppgavedo0 _.OPPGAVE_ID & 1758 521 % 3,63% 01:44 00:13 587 916
select oppgavedo0 _.OPPGAVE_ID & 313, 4,43% 3,47 % 01:28 00:13 624 083
select oppgavedo0 .OPPGAVE_ID & 262, 4,67% 3,38% 01:33 00:12 639 818
select oppgavedo0 .OPPGAVE_ID & 1287 3,57% 3,36 % 01:11 00:12 559 517
select oppgavedo0 .OPPGAVE_ID & 1158 2,98 % 3,03 % 00:59 00:11 498 704

Copyright © 2015 Accenture All Rights Reserved.

Answer: Because another table has a
foreign key without index support

SELECT F.COLSEQ

, F. COLNAME
FROM SYSIBM.SYSRELS R
,SYSIBM.SYSFOREIGNKEYS F
WHERE R.CREATOR = 'GS606P' COLSEQ | COLNAME
AND R.TBNAME = 'T_OPPGAVE' 1| SIEKKLISTE ID
AND R.REFTBNAME = —
'T SJEKKLISTE'
AND F.CREATOR = R.CREATOR
AND F.TBNAME = R.TBNAME
AND F.RELNAME = R.RELNAME
TABLE INDEX TB_SEQ GP TB_IDX_GP IS _GETP IS_TBGETP
T_SJEKKLISTE_LINJE XIE21VEC 2,0 0,0
T_SJEKKLISTE_KOLONNE XIE21X7B 2,0 0,0
T_SJEKKLISTE XPKTRSJE 4,0 1,8
T_SJEKKLISTE 0,0 1,8
T_OPPGAVE 2 645,6 0,0

Copyright © 2015 Accenture All Rights Reserved.

The product of two numbers

* Not a very large number (1): A large number: (1) X (2)
— A batch executed a correlated subquery — Each batch run did 374 million page
without index support. gets for this table
— Full table scan of 3 400 pages on every — Execution time for each run exceeded
execution. 2,5 hours
— No disaster for a batch. — A disaster for this batch. Unable to

complete in batch-window

* Not a very large number (2):

The subquery was executed 110 000 * A smaller faCtOr: _

times during each run of the batch. — Created new index tailored for the

Does not seem unreasonable for a subquery

batch — Now 3 page gets per subquery
execution

« A smaller product:

— 330 000 page gets for this table/index
during a batch run

— Execution time now 15 minutes

Copyright © 2015 Accenture All Rights Reserved.

Redundancy is sometimes required...

Find payments with a certain
‘current’ status

1. Normalized tables:

SELECT ..

FROM PAYMENT P

INNER JOIN PAYMENT STATUS S

ON P.PAYMENT ID = S.PAYMENT ID
WHERE S.STATUS CODE = :H
AND S.STATUS_ TIME =
(SELECT MAX(S2.STATUS TIME)
FROM PAYMENT STATUS S2
WHERE S2.PAYMENT ID = S.PAYMENT ID)

2. Redundant column
CURRENT_STATUS CODE:

SELECT P.PAYMENT ID
FROM PAYMENT P
WHERE P.CURRENT STATUS CODE = :H

Copyright © 2015 Accenture All Rights Reserved.

« ASssume:

— Each payment has an average of 4 status-
history rows.

— Status-history contains 1 million rows with
requested status value.

— Requested value is most recent status for
1000 payments.

* Result:

— With normalized tables and reasonable
indexing we will need 2 — 5 million getpage
operations to retrieve 1000 rows.

— With redundant copy of current status and
reasonable indexing we will need 2000 —
3000 getpage operations to retrieve 1000
rows.

...good understanding of data patterns
may be even better...

Find task items on active tasks * Database skills:
where approval is pending — Redundancy may help a lot
SELECT .. * Application skills:
FROM TASK T — Only active tasks have items with
INNER JOIN TASK STATUS S pending approval
ON S.TASK_ID = T.TASK_ID — Even most active tasks have no
INNER JOIN TASK ITEM I items with pending approval
ON I.TASK ID = T.TASK ID
WHERE I.APPROVAL = ’ PEND’ e Combined skills:
AND S.STATUS_CODE = ’ACTV’ — Best solution is a new index on
AND S.STATUS TIME = task_item with key ‘approval’

(SELECT MAX (S2.STATUS TIME)
FROM TASK STATUS S2
WHERE S2.TASK ID
= S.TASK_ID)

Copyright © 2015 Accenture All Rights Reserved.

... and synergy of creative minds may be
best

Order-status history with ~ * Database skills:

— Redundancy may help a lot
seguence numbers:

SELECT .. ° Application skills:
FROM ORDER O — Why not change the rules:
INNER JOIN ORDER_STATUS S AlwayS use SEQ NO = 9999
ON S.ORDER ID = O.ORDER _ID —

WHERE S.STATUS CODE = ‘READY’ for current status of an order

AND S.SEQ NO =
(SELECT MAX (S2.SEQ_NO)

FROM ORDER_STATUS S2 * Agreed result:

WHERE S2.0ORDER ID = S.ORDER ID) SELECT

FROM ORDER O
INNER JOIN ORDER STATUS S

ON S.ORDER ID = O.ORDER ID
WHERE S.STATUS CODE = ‘READY’
AND S.SEQ NO = 9999

Copyright © 2015 Accenture All Rights Reserved.

Connection statement cache

« ADBMS must translate the SQL statements sent to it. This is a CPU-demanding
process (finally.... till now we have mostly looked at |O and memory....).

— Load into shared pool

— Syntax parse (correct SQL as such)
— Semantic parse (are all table & column names correct, check dictionary)
— Optimisation (create access plan with info from db statistics)

— Create executable
* You may set up each connection with a cache of SQL statements already translated,.

* Requires the SQL to be exact the same. Is case sensitive. Must use bind variables,

not values.

select order id, account id Does not select order id, account id
from ord;r item - match from order item

where account_i_d = :0rderId neither where account id = 158293

select Order Id, Account Id
from Orde:_Item
where Account Id = :0OrderId

« Hint: Always user bind variables, even
when you work with a constant. And

use the same variable name 13

Search for exceptional values
DB2 Catalog info:

« SYSTABLES:
1 million rows in table.

« SYSINDEXES:
2 distinct key values for index on
STATUS_CODE

« SYSCOLDIST for
STATUS CODE values:

— 99.99% 'NORMAL'
— 0.01% 'SPECIAL’

Copyright © 2015 Accenture All Rights Reserved.

Probable access path
selection:

Sequential scan of table or clustering
index:

.WHERE STATUS_CODE = ?

Index lookup on STATUS CODE:

.WHERE STATUS_CODE
= 'SPECIAL’

Controlling data growth

« Data growth may not
Impact transaction
performance
significantly if
— Number of accessed

rows per transaction is
stable anyway

— Every SQL is supported
by indices that will hit
only requested rows

Copyright © 2015 Accenture All Rights Reserved.

e But real life is often
different. In this case:

— Some gueries did
sequential scans of
entire tables or indices

— One query accessed all
rows in table x and
joined them with other
tables

Growing backlog for archive/delete of
outdated information

Avg CPU per Transaction

0,0600

0.0400

0.0300
-»

0,0200

0,0100

ﬂ ﬂmu T I I I T I I I T I I I T I I I T
e & F PP PP PP PP PSP P
WS 3
rﬁn E@' g E@’ :t:’F Eci‘ qpci‘ !&’ & tF d‘"’ Ed‘"’ v :_c";‘ oS q?_@f :tf"‘ q,@ o

Copyright © 2015 Accenture All Rights Reserved.

Can | predict the execution sequence of a
compound statement?

* No sequence granted, but most likely something like:

select mandatoryl.x (7)
,optional.y
from mandatoryl (2 or 3)
inner join mandatory2 (3 or 2)
on mandatoryl.z = mandatory2.z
left outer join optional (4)

on optional.u = mandatory2.u
where mandatory2.w = ?
and mandatoryl.a in
(non-correlated subselect) (1)
and exists (correlated subselect) (5)
order by mandatory.x (6)

Copyright © 2015 Accenture All Rights Reserved.

