


















































	FOUNTAIN CODES FOR HIGHLY UNRELIABLE SENSOR NETWORKS
	Contact person

	Thomas Haenselmann (haenselmann@informatik.uni-mannheim.de)
	Description

	Fountain codes are a fairly recent discovery in the field of source coding with high relevance for unreliable sensor networks but also for high latency scenarios such as described in the ANA work package. A very brief description of the idea:
	Traditional data transmission (like e.g., FTP) splits a file into small so-called data-chunks and sends each chunk as a separate packet until it has been fully transmitted. A missing or erroneous data-chunk has to be replaced by another copy. In case of a large number of receivers like in broadcast- or multicast scenarios, many chunks might have to be retransmitted. The process ends no sooner than everyone has got the full set of chunks. If the link is of low quality and the delay is very long as described in the ANA work package for interplanetary communication, space missions, MANETs or wireless sensor networks or if no feedback channel is available at all, providing all receivers with the full set of chunks to reconstruct the data might be challenging or not feasible. This is where data fountains come in.
	The data fountain sends a potentially endless amounts of packets which are pairwise different with a high probability. In other words, you will hardly ever see a packet twice. Let us assume that a file was split into 10 data-chunks. With the traditional FTP-like data transfer a receiver needs to get chunk #1 till #10 in order to reconstruct the file. Using a data fountain we can pick any 10 packets from the endless stream of packets and this random choice of 10 packets will reconstruct our file in most cases. In rare cases we might need a small number of additional packets.
	The unusual property, however, is that any missing or erroneous chunk can be replaced by any other chunk (with a very high likelihood). In contrast, in the case of FTP, a missing chunk #5 can only replaced by another copy of chunk #5. In the case of data fountains, a single additional packet will replace missing packets at the receivers' side, no matter were they occurred. Intuitively speaking, an additional packet is useful for closing any gap at the receivers side. So a very low number of additional packets might already be enough to satisfy all receivers. This is relevant e.g., for firmware updates of an entire sensor network or for the file transfer in peer-to-peer networks with many receivers.
	The algorithm
	In order to work, sender and receiver need to use the same pseudo random bit source (like the /dev/urandom device under Linux). Whenever the sender and the receiver draw the next bit from the pseudo random source, it will be the same bit. For cryptography, a random bit stream is sometimes stored on a CD or DVD and used for encryption at the sender and for decryption at the receiver side. However, in our case getting the bits from an algorithm is more suitable.
	As can be seen from the following example, the sender splits a 12-bit message into 3 chunks, each of which as 4 bits and arranges the file into a 3x4 matrix. Then, it draws 3 bits from the random bit source and places then into the first row of the left matrix. The row is then multiplied with the data using the modulo-2 arithmetic (like normal addition and multiplication in the binary system but the carry-over is neglected – this essentially becomes an XOR for the addition and an AND for the multiplication). A new packet for the data fountain is created on the right side of the equation. This packet will be transmitted over the network. Now another three bits are drawn from the random bit source and the process repeats over and over again.
	On the receiver side, at least three packets need to be gathered. Because sender and receiver use the same random number source, they also use the same random bits. So the receiver knows the random bits which were used to create each of the received packets. It then arranges the random bits in a 3x3 matrix. Actually, the same 3x3 matrix was used at the sender side to create the packets. In other words, the sender calculated RxM=P (random Matrix R, message matrix M resulting in packet matrix P). In order to reconstruct the file, the receiver calculates the inverse Matrix R-1 to obtain the original message: R-1 xP=M Also have a look at the case in which a packet gets lost. The receiver will simply get another packet from the data fountain and another three bits from the random data source. The reconstruction is then done exactly as described above.
	Task

	1. Simulation of the sender side: The user should be allowed to enter a string. This string of 8-bit characters is interpreted as a long bit vector resp. it is the data to be transmitted. Group this bit vector into a matrix. The width of the matrix should be 8, the height should correspond to the number of characters the user entered. Thus, you see the bit-representation of one character per line in your matrix. Also display this matrix to the user. Now the program should draw bits from a random bit source and produce a stream of packets from the user input. Store a sufficiently large number of packets from this fountain. As you generate packets, the random bit vector and the resulting packet should be displayed to the user as a bit-string.
	2. Given that your user has entered n characters, the above application should have stored n packets from the fountain. Now, try to reconstruct the original string. After each iteration you should display the state of your program in a meaningful way so that a user can see what you are doing. Now you have to solve the following problem: No one can guarantee that your random bits yield an invertible matrix! If you encounter a zero-only line in your transform matrix you need to draw another packet and a random bit vector from your fountain and solve the problem.
	How often can you cope with n packets, how often do you need 1, 2 or more additional packets?
	Your application can be a text-mode only application. Write in Java, C or C++. Except for the required character in- and output you should do all programming by yourself. Your application need not be optimal but self-made. Keep your program as simple as possible. You can store bits as integers or alike to you convenience. You may want to do your own literature research as part of the task (the Internet is a good source in the case of data fountains). 
	Skills

	C, C++ or Java
	Delay Tolerant Networking for ANA 
	Contact person 
	Description 
	Task 
	Skills 
	References 

	Delay Tolerant Overlay Strategies For Video Streams 
	Contact person 
	Description 
	Task 
	Skills 
	References 

	Real­-World Video Streaming Experiment over MANET 
	Contact person 
	Description 
	Task 
	Skills 
	References 

	Multihop Video Streaming Experiment over MANET 
	Contact person 
	Description 
	Task 
	Skills 
	References 

	Implementing and Deploying a HomE-Care Application Using a Wireless Sensor Network 
	Contact person 
	Description 
	Task 
	Skills 
	References 

	On the topology consistency in MANETS 
	Contact person 
	Description 
	Task 
	Skills 
	References 

	A simple file-sharing system for MANETs using DENS 
	Contact person 
	Description 
	Skills 
	References 

	A simple distributed alarm system for MANETs using DENS and GPS data 
	Contact person 
	Description 
	Skills 
	References 

	Implementing Routing Attacks in MANETs 
	Contact person 
	Description 
	Task 
	Skills 
	References 

	a Distributed Authentication Mechanism for MANETs 
	Contact person 
	Description 
	Task 
	Skills 
	References 

	Monitoring uninvited persons to enter the DMMS lunchroom (and using their coffee machine)
	Contact person
	Description
	Task
	Required skills
	References


