
INF 5040 1

INF5040, Roman Vitenberg 1

Time and Coordination in
Distributed Systems

INF 5040 autumn 2015

 lecturer: Roman Vitenberg

We live in an asynchronous
world

Ø Each entity or process has its own pace
§  Computers, OS processes, mobile devices, vehicles,

satellites, planets
Ø Communication latencies are not decreasing over time
Ø Clocks are inherently unsynchronized

§  Perfect synchronization is theoretically impossible
Ø Gets worse as the scale increases

§  Nuisance for people, issue for node clusters, big issue for
satellites, ultimate obstacle for inter-planet communication

Ø Yet, many applications require synchronization
§  Timeouts, video, audio, GPS/Galileo, air traffic control, …

INF5040, Roman Vitenberg 2

INF 5040 2

INF5040, Roman Vitenberg 3

Time in Distributed Systems

Ø Uses of time
§  Real-time synchronization
§  Relative order of events

–  The only way to infer in an asynchronous system is through
causality

Ø Logical time
§  Attempts to capture dependencies due to message

exchange and local process ordering
–  Possible false positives
–  Does not capture dependencies that are due to a cause

other than message exchange

INF5040, Roman Vitenberg 4

“Happened-before” relation

Ø Notation
§  x →p y: x happened before y at process p
§  x → y: x happened before y

Ø Condition 1
§  If ∃ process p : x →p y, then x → y

Ø Condition 2
§  For each process m : send(m)→ rcv(m)

Ø Condition 3
§  If x, y, and z are events such that x → y and
y → z, then x → z

INF 5040 3

INF5040, Roman Vitenberg 5

“Happened-before” illustrated

Ø  Events that are not related by the “happened-before”
relation are called concurrent: a || e

p2

p1

p3

a

f

b

e

d c

m1

m2

INF5040, Roman Vitenberg 6

Logical clock
Ø  Each process p maintains its own logical clock Cp

§  Monotonically increasing counter
§  Used to timestamp events

Ø  Cp(a) : the timestamp of event a at process p
Ø  Rules for logical clock

§  LC1:
–  Cp is incremented by 1 before each event is issued at process p

§  LC2:
–  When a process p sends a message m, it piggybacks Cp on m
–  When (m,t) is received by q, q computes Cq:=max(Cq,t)and

applies LC1 before timestamping the event rcv(m).

INF 5040 4

INF5040, Roman Vitenberg 7

Example for Logical Clocks

p2

p1

p3

a

f

b

e

d c

m1

m2

1

1 2

3 4

5

x → y ⇒ C(x) < C(y) (not equivalent!!)

INF5040, Roman Vitenberg 8

Vector clocks

Ø  Assumption: N processes whose ids are totally ordered
Ø  Each process p maintains its vector clock Vp of size N
Ø  Vp(a) : the timestamp of event a at process p
Ø  Rules for vector clock

§  VC1: Vp [j] is initially 0 for all j
§  VC2:

–  p sets Vp[p]:=Vp[p]+1 before timestamping each event
§  VC3:

–  When p sends a message m, it piggybacks Vp on m
§  VC4: When (m,t) is received by q, q computes Vq[j]:=max
(Vq[j],t[j])for all j and applies VC2

INF 5040 5

INF5040, Roman Vitenberg 9

Example for Vector Clocks

p2

p1

p3

a

f

b

e

d c

m1

m2

(0,0,1)

(1,0,0) (2,0,0)

(2,1,0) (2,2,0)

(2,2,2)

x → y ⇔ V(x) < V(y) (equivalent)

INF5040, Roman Vitenberg 10

Local events and states

,,,, 3322110
iiiiiiii sesesesh ↔↔↔=

The history (h) of a process is modelled as a
sequence of events and corresponding states:"

Sometimes we are only interested in the events:"

,,, 321
iiii eeeh =

Sometimes it is assumed that sending a message
does not alter the local state"

INF 5040 6

INF5040, Roman Vitenberg 11

Ø Global history: a collection of local histories, one
from each process

Ø Cut: union of prefixes of process histories
§  May be consistent or not

Global histories and cuts

p2

p1

p3

a

f

b

e

d c

m1

m2

INF5040, Roman Vitenberg 12

Consistent cuts

When reasoning about system execution, we are
only interested in consistent cuts!"

Cut C is consistent if

CfefCe ∈⇒→∧∈)(

INF 5040 7

INF5040, Roman Vitenberg 13

Global state

P1 P2 P3 ……… Pn

…… ……… ……… ………

0
1s
1
1s

3
1s

2
1s

0
2s

1
2s

3
2s

2
2s

0
3s
1
3s

3
3s

2
3s

0
ns
1
ns

3
1s

2
ns

…consistent states
correspond to
consistent cuts...

If local states do not
include message
sends, we
additionally need to
capture messages
in transition

INF5040, Roman Vitenberg 14

Reasoning about global
states and its applications

Ø Linearization is a full ordering of events in a
global history that preserves →

Ø State S’ is reachable from state S if there is a
linearization that starts in S and ends in S’

Ø Property: a global state predicate
§  Stable property: if true in S, true in every state

reachable from S
§  Safety property: true in every state reachable from S0

§  Liveness property: in every linearization, there is a
state reachable from S0 in which it is true

INF 5040 8

INF5040, Roman Vitenberg 16

The snapshot problem

Ø  Finds a consistent global state that may have occurred

Ø  Consistent state reachable from S1 so that S3 is
reachable from it

S1 Snapshot starts"

S2

The state represented by the snapshot"

S3 Snapshot ends"

What actually occurs: e1, e2, …"

INF5040, Roman Vitenberg 17

Assumptions for the snapshot
algorithm

Ø No process or network link fails
Ø Network links preserve FIFO
Ø Full network: each pair of processes

connected by two network links, one in
each direction

INF 5040 9

INF5040, Roman Vitenberg 18

Responsibility of the
processes

Ø Every process can initiate a snapshot
§  A process takes initiative to log its own state and

sends a marker message on all output channels.

Ø Each process has responsibility for
§  Logging its own state,
§  Logging the incoming messages on input channels,
§  Sending or forwarding the marker.

Ø Upon termination, the collection of local states
of processes and recorded states of channels
should give us a consistent global state

INF5040, Roman Vitenberg 19

The first attempt

P sends a marker over all outgoing links…

P waits until it receives a marker on all input channels
P logs its own state

When another process Q receives a marker
 Q logs its own state
 Q sends the marker back to P…

INF 5040 10

INF5040, Roman Vitenberg 20

Is the protocol correct?

Ø The captured state may be inconsistent
Ø It does not capture messages in transit

p2

p1

p3

marker

m

marker

INF5040, Roman Vitenberg 21

Correct snapshot protocol

Ø [Chandy,Lamport 1985]
Ø The procedure to start the snapshot

P logs its own state.
P sends a marker over all outgoing links.
P starts to log incoming messages on all
 input channels

INF 5040 11

INF5040, Roman Vitenberg 22

The procedure upon
marker reception

When P receives a marker over channel c
 IF P has not recorded its state
 P records its state.
 P forwards the marker over all output channels
 P sets the state of c to the empty set
 P starts to record incoming messages
 on all other input channels
 ELSE
 P records the state of c:
 all the messages that have been

 received on c since P recorded
 its own state, which are said to be
 in transition over the channel
 END

INF5040, Roman Vitenberg 23

Proof of protocol correctness

Ø The recorded state is consistent.
§  If x → y, and y occurred at p before p

recorded its state, then x must have
occurred at q before q recorded its state."

Ø State S2 must be reachable from S1."
Ø State S3 must be reachable from S2.!

INF 5040 12

INF5040, Roman Vitenberg 24

Distributed consensus

Ø N processes out of which at most f can be faulty
Ø Two possible input values, 0 or 1
Ø Agreement (also called correctness)

§  No two non-faulty processes decide on different values
Ø Termination

§  If there are non-faulty processes, at least one of them
decides

Ø Integrity (or validity or non-triviality)
§  if all non-faulty processes start with the same initial

value v, then v is the only possible decision value for a
non-faulty process

INF5040, Roman Vitenberg 25

Other agreement problems

Ø Reliable multicast (also called terminating
reliable broadcast)

Ø Group membership
Ø Leader election
Ø Distributed locking
Ø Mutual exclusion
Ø Atomic transactions
Ø Coordinated resource allocation

INF 5040 13

INF5040, Roman Vitenberg 26

Reliable broadcast

Ø One sender that sends a single message
Ø Termination: Every non-faulty process

delivers a message (possibly ⊥)
Ø Agreement: No two non-faulty processes

deliver different messages
Ø Validity: no spurious messages
Ø Integrity: If the sender is non-faulty, it

delivers the message it sent

INF5040, Roman Vitenberg 27

Group membership

Ø Each process starts with a list of
processes it considers correct

Ø Agreement on the list of participating
processes

Ø Validity 1: If a process is in all input lists,
then it will be in the decided list

Ø Validity 2: If a process is in no input list,
then it will not be in the decided list

INF 5040 14

INF5040, Roman Vitenberg 28

Known impossibility results
for distributed consensus

Ø Impossible to solve if at least a third of all
processes are malicious
§  Can be alleviated by using digital signatures

Ø Impossible to solve in asynchronous systems
where processes can fail
§  Can be circumvented by masking faults
§  Or by designating the process that adds to

asynchrony as faulty
§  Or by using randomization

INF5040, Roman Vitenberg 29

Mutual exclusion problem
Ø  Safety:

§  At most one process can be in a critical section at a time

Ø  Liveness:
§  Each request to enter or exit the critical section eventually

succeeds (as long as the process that executes in the critical
section eventually requests to leave it)

Ø Ordering:
§  Entrance to the CS must observe the “happened-before” relation

p2

p1 b

c

m1

Request to
enter CR Request to enter CR

INF 5040 15

INF5040, Roman Vitenberg 30

p1
p2

p3

p4

4

Central server algorithm
Ø  Central server that grants entrance to the critical section
Ø  protocol

§  enter() -- enter critical section - blocks if necessary
exit() -- leaves critical section - other processes can now enter

2

Queue of requests

has token

Release
 token

Request
token

Grant token

INF5040, Roman Vitenberg 31

Evaluation of the
central server algorithm

Ø  Are safety and liveness satisfied?
Ø  Is ordering satisfied?

§  How to ensure it?

Ø  Shortcomings of the algorithm
Ø  Performance bottleneck
Ø  The server can fail

Ø  We can make one of the clients a new server
Ø  Requires distributed election
Ø  How to ensure that the old order preceding the failure is preserved?

Ø  Client with the token may fail
§  How to ensure that the token becomes accessible again?

INF 5040 16

INF5040, Roman Vitenberg 32

Ring-based algorithm

Ø A token rotating in one direction
Ø A process can enter the critical section

when it has the token
Ø When a process that has not requested to

enter receives a token, it passes the token
on

INF5040, Roman Vitenberg 33

Evaluation of the ring-
based algorithm

Ø No central bottleneck
§  Redundant messages are sent if no process attempts

to enter the critical section
§  A process may have to wait a long time for a token

Ø Safety and liveness are trivially satisfied in
absence of failures, but ordering requires an
additional mechanism

Ø Fault-tolerance
§  Problematic when a node crashes

– Mend the ring
–  Ensure that the ring contains exactly one token

INF 5040 17

INF5040, Roman Vitenberg 34

Distributed algorithm based
on logical clocks

Ø  Basic idea [Ricart & Agrawala, 1981]:
§  A process that wishes to enter a critical section, multicasts a

message to all the processes
§  A process can enter a CS when it gets acks from all the processes
§  Rules wrt when to send an ack in order to ensure fulfillment of

the requirements

Ø  Assumptions
§  Processes know each other addresses
§  Every sent message will eventually be delivered

Ø  Properties
§  Each process maintains a logical clock
§  Timestamps include processId: <T,p> (i.e., total ordering)
§  Each process maintains its state wrt token possession

–  RELEASED, WANTED, HELD

INF5040, Roman Vitenberg 35

Ricart & Agrawala algorithm
Upon initialization

 state := RELEASED;
To enter the critical section

 state:= WANTED;
 Multicast a timestamped request to all the processes
 T := the current timestamp;
 wait until ((n-1) acks are received);
 state := HELD;

Upon receiving a request with <Ti,pi> at pj (i ≠ j)
 if (state=HELD or (state=WANTED and (T,pj) < (Ti,pi)))
 queue the request from pi without replying
 else
 send an ack to pi
 end if

Upon exiting from the critical section
 state := RELEASED
 reply to all queued messages

INF 5040 18

INF5040, Roman Vitenberg 36

Evaluation of the
Ricart & Agrawala algorithm

Ø  Are safety and liveness satisfied?
Ø  Is ordering satisfied?
Ø  Shortcomings

Ø  Many messages are sent in order to enter critical section
Ø  2(n-1) messages without network support for multicast
Ø  n messages with native network support for multicast

Ø  Not resilient to process crashes

INF5040, Roman Vitenberg 37

Summary of distributed
mutual exclusion algorithms

Ø Little resilience to failures
§  Can be improved by additional mechanisms
§  But it will never be perfect in an

asynchronous system

Ø Central server requires the lowest number
of messages but can become a bottleneck

INF 5040 19

INF5040, Roman Vitenberg 38

Requirements for
distributed leader election

Ø  In many distributed algorithms, one of the participating
processes will play the role of a central coordinator
§  Central server in the mutual exclusion algorithms
§  Coordinator of a distributed transaction

Ø  If a coordinator fails, one of the remaining processes
can be elected to take over the central role
§  In order to provide better fault-tolerance

Ø  The main requirements
§  Safety: only one leader may exist at a time
§  Liveness: a leader will eventually be elected

INF5040, Roman Vitenberg 39

The “Bully” algorithm
Ø  [Silberschatz et al, 1993]
Ø  Prerequisites

§  The processes know each other identities and addresses
§  Process identifiers are totally ordered
§  The algorithm selects the process with the biggest identifier

Ø Message types
§  election: announces an election
§  answer: is sent as a reply to the election message
§  coordinator: announces the identity of the new coordinator

INF 5040 20

INF5040, Roman Vitenberg 40

The “Bully” algorithm II
Ø  Election procedure

Ø  The process (that detects that the coordinator has failed)
sends the election message to the processes that have a
bigger identifier

Ø  It then waits a limited amount of time for the answer
message

Ø  If no answer message is received, the process considers itself
as a new coordinator and sends a coordinator message to
all the processes with smaller identifiers

Ø  If an answer message is received, the process waits a limited
amount of time for a coordinator message. If none arrives,
it starts a new election.

INF5040, Roman Vitenberg 41

The “Bully” algorithm III
Ø  Election procedure (continued)

Ø  If a process receives a coordinator message, it memorizes
the identifier included in the message and considers the
process as the new coordinator

Ø  If a process receives an election message, it sends back an
answer message and starts a new election - unless the
process has already started one

Ø  When a process recovers or joins the system, it starts a new
election. If it has the biggest identifier, it makes itself a
coordinator and announces it, even if there is another
functioning coordinator

INF 5040 21

INF5040, Roman Vitenberg 42

Illustration for the
“bully” algorithm

election

election

answer
answer

p1 p2 p3 p4 Phase 1

C

p1 p2 p3 p4 Phase 3

C

p1 p2 p3 p4 Phase 2
C

C

timeout

answer
election

election

election

p1 p2 p3 p4 Phase 4

After a while ……

coordinator

INF5040, Roman Vitenberg 43

Evaluation of the
“bully” algorithm

Ø  Best case: n-2 coordinator messages
§  Occurs when the process with the second highest id detects that

the coordinator has failed

Ø Worst case: O(n2) messages
§  Occurs when the process with the lowest id detects that the

coordinator has failed
§  => (n-1) processes start an election

Ø  Ring-based algorithm is more efficient wrt the number of
messages

INF 5040 22

INF5040, Roman Vitenberg 44

The ring-based algorithm

5

16

12

6

21

3

<El. 5>

<El. 16> <El. 16>

<El. 21>

<El. 21> <El. 21>

<El. 21>

<El. 21> <El. 21>

When a message has made a
full circle without changing
the id, the process will know
that it has the highest number

Then it must inform all other
processes that it is the leader

<C. 21>

<C. 21> <C. 21>

<C. 21>

<C. 21> <C. 21>

…it is possible to handle
multiple elections that have
been started concurrently

