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We live in an asynchronous 
world 

Ø Each entity or process has its own pace 
§  Computers, OS processes, mobile devices, vehicles, 

satellites, planets 
Ø Communication latencies are not decreasing over time 
Ø Clocks are inherently unsynchronized 

§  Perfect synchronization is theoretically impossible 
Ø Gets worse as the scale increases 

§  Nuisance for people, issue for node clusters, big issue for 
satellites, ultimate obstacle for inter-planet communication 

Ø Yet, many applications require synchronization 
§  Timeouts, video, audio, GPS/Galileo, air traffic control, … 
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Time in Distributed Systems 

Ø Uses of time 
§  Real-time synchronization 
§  Relative order of events 

–  The only way to infer in an asynchronous system is through 
causality 

Ø Logical time 
§  Attempts to capture dependencies due to message 

exchange and local process ordering 
–  Possible false positives 
–  Does not capture dependencies that are due to a cause 

other than message exchange 
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“Happened-before” relation 

Ø Notation 
§  x →p y: x happened before y at process p 
§  x → y: x happened before y  

Ø Condition 1 
§  If ∃ process p : x →p y, then x → y 

Ø Condition 2 
§  For each process m : send(m)→ rcv(m) 

Ø Condition 3 
§  If x, y, and z are events such that  x → y  and      
y → z, then  x → z 
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“Happened-before” illustrated 

Ø  Events that are not related by the “happened-before” 
relation are called concurrent: a || e 
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Logical clock 
Ø  Each process p maintains its own logical clock Cp 

§  Monotonically increasing counter  
§  Used to timestamp events 

Ø  Cp(a) : the timestamp of event a at process p 
Ø  Rules for logical clock 

§  LC1: 
–  Cp is incremented by 1 before each event is issued at process p 

§  LC2: 
–  When a process p sends a message m, it piggybacks Cp on m 
–  When (m,t) is received by q, q computes Cq:=max(Cq,t)and 

applies LC1 before timestamping the event rcv(m). 
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Example for Logical Clocks 
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x → y ⇒ C(x) < C(y) (not equivalent!!)  
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Vector clocks 

Ø  Assumption: N processes whose ids are totally ordered 
Ø  Each process p maintains its vector clock Vp of size N 
Ø  Vp(a) : the timestamp of event a at process p 
Ø  Rules for vector clock 

§  VC1: Vp [j] is initially 0 for all j 
§  VC2:  

–  p sets Vp[p]:=Vp[p]+1 before timestamping each event 
§  VC3:  

–  When p sends a message m, it piggybacks Vp on m 
§  VC4: When (m,t) is received by q, q computes Vq[j]:=max
(Vq[j],t[j])for all j and applies VC2 
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Example for Vector Clocks 
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x → y ⇔ V(x) < V(y) (equivalent)  
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Local events and states 

,,,, 3322110
iiiiiiii sesesesh ↔↔↔=

The history (h) of a process is modelled as a 
sequence of events and corresponding states:"

Sometimes we are only interested in the events:"

,,, 321
iiii eeeh =

Sometimes it is assumed that sending a message 
does not alter the local state"
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Ø Global history: a collection of local histories, one 
from each process 

Ø Cut: union of prefixes of process histories 
§  May be consistent or not 

Global histories and cuts 

p2 

p1 

p3 

a 

f 

b 

e 

d c 

m1 

m2 

INF5040, Roman Vitenberg 12 

Consistent cuts 

When reasoning about system execution, we are 
only interested in consistent cuts!"

Cut C is consistent if 

CfefCe ∈⇒→∧∈ )(
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Global state 
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…consistent states 
correspond to  
consistent cuts... 

If local states do not 
include message 
sends, we 
additionally need to 
capture messages 
in transition 
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Reasoning about global 
states and its applications 

Ø Linearization is a full ordering of events in a 
global history that preserves → 

Ø State S’ is reachable from state S if there is a 
linearization that starts in S and ends in S’ 

Ø Property: a global state predicate 
§  Stable property: if true in S, true in every state 

reachable from S 
§  Safety property: true in every state reachable from S0 

§  Liveness property: in every linearization, there is a 
state reachable from S0 in which it is true 
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The snapshot problem 

Ø  Finds a consistent global state that may have occurred 

Ø  Consistent state reachable from S1 so that S3 is 
reachable from it 

S1 Snapshot starts"

S2 

The state represented by the snapshot"

S3 Snapshot ends"

What actually occurs: e1, e2, …"
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Assumptions for the snapshot 
algorithm 

Ø No process or network link fails 
Ø Network links preserve FIFO 
Ø Full network: each pair of processes 

connected by two network links, one in 
each direction 
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Responsibility of the 
processes 

Ø Every process can initiate a snapshot 
§  A process takes initiative to log its own state and 

sends a marker message on all output channels. 

Ø Each process has responsibility for  
§  Logging its own state, 
§  Logging the incoming messages on input channels, 
§  Sending or forwarding the marker. 

Ø Upon termination, the collection of local states 
of processes and recorded states of channels 
should give us a consistent global state 
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The first attempt 

P sends a marker over all outgoing links… 

P waits until it receives a marker on all input channels 
P logs its own state 
 
When another process Q receives a marker 
        Q logs its own state 
        Q sends the marker back to P… 
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Is the protocol correct? 

Ø The captured state may be inconsistent 
Ø It does not capture messages in transit 
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Correct snapshot protocol 

Ø [Chandy,Lamport 1985] 
Ø The procedure to start the snapshot 

P logs its own state. 
P sends a marker over all outgoing links. 
P starts to log incoming messages on all 
        input channels 
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The procedure upon 
marker reception 

When P receives a marker over channel c 
  IF P has not recorded its state 
     P records its state. 
     P forwards the marker over all output channels 
     P sets the state of c to the empty set 
     P starts to record incoming messages 
        on all other input channels 
  ELSE 
     P records the state of c: 
             all the messages that have been 

             received on c since P recorded 
             its own state, which are said to be 
             in transition over the channel 
  END 
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Proof of protocol correctness 

Ø The recorded state is consistent. 
§  If x → y, and y occurred at p before p 

recorded its state, then x must have 
occurred at q before q recorded its state."

Ø State S2 must be reachable from S1."
Ø State S3 must be reachable from S2.!
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Distributed consensus 

Ø N processes out of which at most f can be faulty 
Ø Two possible input values, 0 or 1  
Ø Agreement (also called correctness) 

§  No two non-faulty processes decide on different values 
Ø Termination  

§  If there are non-faulty processes, at least one of them 
decides 

Ø Integrity (or validity or non-triviality) 
§  if all non-faulty processes start with the same initial 

value v, then v is the only possible decision value for a 
non-faulty process 
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Other agreement problems 

Ø Reliable multicast (also called terminating 
reliable broadcast) 

Ø Group membership 
Ø Leader election 
Ø Distributed locking 
Ø Mutual exclusion 
Ø Atomic transactions 
Ø Coordinated resource allocation 
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Reliable broadcast 

Ø One sender that sends a single message 
Ø Termination: Every non-faulty process 

delivers a message (possibly ⊥) 
Ø Agreement: No two non-faulty processes 

deliver different messages 
Ø Validity: no spurious messages 
Ø Integrity: If the sender is non-faulty, it 

delivers the message it sent 
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Group membership 

Ø Each process starts with a list of 
processes it considers correct 

Ø Agreement on the list of participating 
processes 

Ø Validity 1: If a process is in all input lists, 
then it will be in the decided list 

Ø Validity 2: If a process is in no input list, 
then it will not be in the decided list 
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Known impossibility results 
for distributed consensus 

Ø Impossible to solve if at least a third of all 
processes are malicious 
§  Can be alleviated by using digital signatures 

Ø Impossible to solve in asynchronous systems 
where processes can fail 
§  Can be circumvented by masking faults 
§  Or by designating the process that adds to 

asynchrony as faulty 
§  Or by using randomization 
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Mutual exclusion problem 
Ø  Safety: 

§  At most one process can be in a critical section at a time 

Ø  Liveness: 
§  Each request to enter or exit the critical section eventually 

succeeds (as long as the process that executes in the critical 
section eventually requests to leave it) 

Ø Ordering: 
§  Entrance to the CS must observe the “happened-before” relation 
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Central server algorithm 
Ø  Central server that grants entrance to the critical section 
Ø  protocol 

§  enter()  -- enter critical section - blocks if necessary 
exit()  -- leaves critical section - other processes can now enter 

2 

Queue of requests 

has token 

Release 
  token 

Request 
token 

Grant token 
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Evaluation of the  
central server algorithm 

Ø  Are safety and liveness satisfied? 
Ø  Is ordering satisfied? 

§  How to ensure it? 

Ø  Shortcomings of the algorithm 
Ø  Performance bottleneck 
Ø  The server can fail 

Ø  We can make one of the clients a new server 
Ø  Requires distributed election 
Ø  How to ensure that the old order preceding the failure is preserved? 

Ø  Client with the token may fail 
§  How to ensure that the token becomes accessible again? 
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Ring-based algorithm 

Ø A token rotating in one direction 
Ø A process can enter the critical section 

when it has the token 
Ø When a process that has not requested to 

enter receives a token, it passes the token 
on 
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Evaluation of the ring-
based algorithm 

Ø No central bottleneck 
§  Redundant messages are sent if no process attempts 

to enter the critical section 
§  A process may have to wait a long time for a token 

Ø Safety and liveness are trivially satisfied in 
absence of failures, but ordering requires an 
additional mechanism 

Ø Fault-tolerance 
§  Problematic when a node crashes 

– Mend the ring 
–  Ensure that the ring contains exactly one token 
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Distributed algorithm based 
on logical clocks  

Ø  Basic idea [Ricart & Agrawala, 1981]: 
§  A process that wishes to enter a critical section, multicasts a 

message to all the processes 
§  A process can enter a CS when it gets acks from all the processes 
§  Rules wrt when to send an ack in order to ensure fulfillment of 

the requirements 

Ø  Assumptions 
§  Processes know each other addresses 
§  Every sent message will eventually be delivered 

Ø  Properties 
§  Each process maintains a logical clock 
§  Timestamps include processId: <T,p> (i.e., total ordering) 
§  Each process maintains its state wrt token possession 

–  RELEASED, WANTED, HELD 

INF5040, Roman Vitenberg 35 

Ricart & Agrawala algorithm 
Upon initialization 

 state := RELEASED; 
To enter the critical section 

 state:= WANTED; 
 Multicast a timestamped request to all the processes 
 T := the current timestamp; 
 wait until ((n-1) acks are received); 
 state := HELD; 

Upon receiving a request with <Ti,pi> at pj (i ≠ j) 
 if (state=HELD or (state=WANTED and (T,pj) < (Ti,pi) ) ) 
  queue the request from pi without replying 
 else 
  send an ack to pi 
 end if 

Upon exiting from the critical section 
 state := RELEASED 
 reply to all queued messages  
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Evaluation of the  
Ricart & Agrawala algorithm 

Ø  Are safety and liveness satisfied? 
Ø  Is ordering satisfied? 
Ø  Shortcomings 

Ø  Many messages are sent in order to enter critical section 
Ø  2(n-1) messages without network support for multicast 
Ø  n messages with native network support for multicast  

Ø  Not resilient to process crashes  

INF5040, Roman Vitenberg 37 

Summary of distributed  
mutual exclusion algorithms 

Ø Little resilience to failures 
§  Can be improved by additional mechanisms 
§  But it will never be perfect in an 

asynchronous system 

Ø Central server requires the lowest number 
of messages but can become a bottleneck 
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Requirements for  
distributed leader election 

Ø  In many distributed algorithms, one of the participating 
processes will play the role of a central coordinator 
§  Central server in the mutual exclusion algorithms 
§  Coordinator of a distributed transaction 

Ø  If a coordinator fails, one of the remaining processes 
can be elected to take over the central role 
§  In order to provide better fault-tolerance 

Ø  The main requirements 
§  Safety: only one leader may exist at a time 
§  Liveness: a leader will eventually be elected 
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The “Bully” algorithm 
Ø  [Silberschatz et al, 1993] 
Ø  Prerequisites 

§  The processes know each other identities and addresses 
§  Process identifiers are totally ordered 
§  The algorithm selects the process with the biggest identifier 

Ø Message types 
§  election:  announces an election 
§  answer:  is sent as a reply to the election message 
§  coordinator:  announces the identity of the new coordinator 
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The “Bully” algorithm II 
Ø  Election procedure 

Ø  The process (that detects that the coordinator has failed) 
sends the election message to the processes that have a 
bigger identifier 

Ø  It then waits a limited amount of time for the answer 
message  

Ø  If no answer message is received, the process considers itself 
as a new coordinator and sends a coordinator message to 
all the processes with smaller identifiers 

Ø  If an answer message is received, the process waits a limited 
amount of time for a coordinator message. If none arrives, 
it starts a new election. 
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The “Bully” algorithm III 
Ø  Election procedure (continued) 

Ø  If a process receives a coordinator message, it memorizes 
the identifier included in the message and considers the 
process as the new coordinator 

Ø  If a process receives an election message, it sends back an 
answer message and starts a new election - unless the 
process has already started one 

Ø  When a process recovers or joins the system, it starts a new 
election. If it has the biggest identifier, it makes itself a 
coordinator and announces it, even if there is another 
functioning coordinator 
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Illustration for the  
“bully” algorithm 
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After a while …… 

coordinator 
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Evaluation of the 
“bully” algorithm 

Ø  Best case: n-2 coordinator messages 
§  Occurs when the process with the second highest id detects that 

the coordinator has failed 

Ø Worst case: O(n2) messages 
§  Occurs when the process with the lowest id detects that the 

coordinator has failed 
§  => (n-1) processes start an election 

 
 

Ø  Ring-based algorithm is more efficient wrt the number of 
messages 
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The ring-based algorithm 
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When a message has made a 
full circle without changing 
the id, the process will know 
that it has the highest number 

Then it must inform all other 
processes that it is the leader 
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…it is possible to handle 
multiple elections that have 
been started concurrently 


