An instantaneous introduction to Perl

Michael Grobe
Academic Computing Services
The University of Kansas

July 1999

Topics

Basic Perl statements and variables

Reading data from the keyboard

If statements and relational operators

Using logical operators

List of Perl operators

Arrays
Repetition and "looping constructs"

Associative arrays

Subroutines and modular programs

Miscellaneous built-in Perl functions

Pattern matches and reqular expressions

Objects
Some final thoughts

Basic Perl statements and variables

Here is a very simple program that uses the Perl print
statement:

#!/usr/local/bin/perl
print "Hello world!";

The first line tells the operating system where to find the Perl
interpreter. The second line causes the string "Hello world!" to
appear on your screen. The second line is composed of a
command, print and an "argument”, "Hello world!", and
IS terminated by a semicolon (;).

Use the pico editor to define a file named hello.pl

containing this file. Type pico followed by the file name at the
UNIX command line prompt, which is probably a dollar sign ($).

pico hello.pl

After you have entered the program and saved it to the file
hello.pl, run it by using a command like:

perl hello.pl

you should see "Hello world!" appear on your screen, followed
by the next command prompt, as in:

falcon:/homef/imajhawk$ perl hello.pl
Hello world!falcon:/homef/imajhawks$

Now change the print string to "Hello world'\n", and rerun
the program. You will then see something like:

falcon:/homef/imajhawk$ perl hello.pl
Hello world!
falcon:/homef/imajhawks$

This time the program prints a "newline" (represented by
"\n") after printing "Hello world!", so that the next command
prompt appears on its own line. If you use two "\n"
sequences you will create a blank line between the line
containing "Hello world!" and the command prompt. Each
newline character forces the writing cursor to drop down
one line.

Another way to print the same string is to use a print
statement like:

print "Hello " . "world\n";

This statement uses the "concatenation operator" (.) to
concatenate the two strings to form a single string
containing the same characters in the original.

Yet another way to print this string is to assign it to a Perl
"variable", say SGREETING, and then print that variable as

In:

SGREETING = "Hello world!\n";
print SGREETING;

The variable SGREETING is simply a place to store the

string for later use. Variables can actually be included
within print strings as in:

SGREETING = "Hello world!";
print "What I want to say to you is:
SGREETING\n";

which will produce something like:

falcon:/homef/imajhawk$ perl hello.pl
What I want to say to you is: Hello world!
falcon:/homef/imajhawks$

SGREETING is a "scalar" variable, a variable holding only
one value at a time.

Scalar variable names always begin with a dollar sign ($).

Note also that Perl variables are not "typed". Variable type
Is determined by use or context.

Reading data from the keyboard
You can read data from the keyboard into a Perl variable by
using a program like:

#!/usr/local/bin/perl

Sline = <STDIN>;
print STDOUT $line;

This program will read one line of input from the "standard
input" and write that line to the "standard output" which
happens to be the screen. Both "STDIN" and "STDOUT" are
optional in this context.

You can prompt the user for input by using a print statement
followed immediately by a read, as in:

#!/usr/local/bin/perl

#

This program gets a user's age.

#

print "Enter your age:";

Sline = <>; # read a line from the

keyboard.
chop $line; # get rid of the Return.
print "You are $line years old.\n";

exit;

When this program runs it will write the prompt string to the
screen and wait for you to type in your age and press the
Return key.

When the input line is placed into the $line variable it ends
with a newline representing the Return key press.

The Perl chop () function was used to eliminate the
newline at the end of the reply.

Note the use of the # sign to include comments in the
program. Any text to the right of a # sign will be ignored by
the Perl interpreter.

Note also the use of the Perl exit statement to leave the
program. exit Is optional in this program because there

were no more statements to execute, but it is necessary in
some programs.

If statements and relational operators

You can evaluate the data input from the user (data
validation) by using an "if" statement and a comparison as
in:

#!/usr/local/bin/perl
print "Enter your age:";

Sline = <>;
chop $line; # get rid of the Return
character.
print "You say you are S$line years old.\n";

if ($line > 130)

{
¥

exit;

print "I don't believe you!\n";

The if statement allows you to compare two numbers and
respond accordingly. In this case the number stored in the
variable $1ine is compared with the number 130 to see
whether $1ine is greater than 130.

If the user enters a number that is greater than 130, the
message expressing skepticism will be printed.

8

The whole expression, $1ine > 130 is a "conditional

expression”, and the general syntax (form) for an if statement
may be represented as:

if (conditional expression)

{

Perl statements to execute 1if the
conditional expression evaluates "true".

} i

Another way to handle this validation is to use an if...else...
statement like:

#!/usr/local/bin/perl
print "Enter your age:";

Sline = <>;
chop $line; # get rid of the Return.

if ($line > 130)

{
J

else

{

print "You say you are $line years old.\n";
} i

exit;

print "I don't believe you!\n";

This time EITHER the message of skepticism OR the message
of acceptance will be printed, but NOT both.

9

You can compare two string values for equality by using the
"eq" relational operator, and you can compare two string

values for inequality by using the "ne" relational operator,
as in:

#!/usr/local/bin/perl
print "Enter your name: ";

4

Sline = <>;
chop $line;

if ($line eqg "Megen")

{
}

else

{
} i

exit;

print "Hi Megen!\n";

print "Hi dude or dudette.\n";

FYI: relational operators return 1 for true and " for false.

10

Using logical operators

A user may also enter a negative number, which would be
another invalid entry. You can test against both of these invalid
entry possibilities by using a logical OR operator (]|), as in:

#!/usr/local/bin/perl
print "Enter your age:";

Sline = <>;
chop $line;
if ($line < 0 || $line > 130)
{
print "I don't believe you!\n";
J
else
{
print "You say you are $line years old.\n";
}i
exit;

You may also use "or" as the logical OR operator, "&&" or

"and" as the logical AND operator, and "!" or "not" as the logical
NOT.

For example, you might ask:
if ($line > 0 && S$line < 130)

to identify a believable response.

11

Actually, to be safe you might use parentheses around
every comparison as in:

if (($line > 0) && (S$line < 130))

to make sure the expression gets evaluated the way you
expect it to.

In fact, you MUST use parens in the Megen example, as in:

if (! ($line ne "Megen"))
The line
if (! $line ne "Megen")

will not work because "! $1ine" will be evaluated as one
operation, the result of which will be compared with
"Megen".

In general, you can define arbitrarily complex conditional
expressions by using the comparison and logical operators
with appropriate (matched) sets of parentheses.

12

Arrays

Perl provides special data structures, called "lists" or
"arrays", to keep track of lists of things. An array named
@Qfruits can be defined as a list of strings by using a Perl
statement like:

@fruits = ("apples", "pears", "bananas") ;

You can then print the value of any element of the list by
specifying its location within the list. That is,

print $fruits([2] ;

will print "bananas".

You might have expected $sfruits[2] to get you "pears",
but item numbering in Perl lists begins with 0.

Note also that array names begin with "@", but that single
elements within an array (i.e., Sfruit [2]) are usually
scalars, so references to them begin with "$".

It is also possible to assign the values of one array to
another, as in:

(Sred fruit, Sgreen fruit, Syellow fruit) =
("apples", "pears", "bananas") ;

In this case the value of $red fruit will become "apples",
$green fruit will become "pears", etc.

13

Repetition and "looping constructs”

It would be impractical if not impossible to print out the
values of large arrays using single print statements. Perl
provides special constructs for performing repetitive tasks
such as this.

For example, to print the values of each list element within
Sfruits you can write a "foreach loop" like this:

#!/usr/local/bin/perl
@fruits = ("apples", "pears", "bananas");
foreach Sfruit (@fruits)

{
print "Sfruit\n";
}; #end foreach

This foreach statement repeats the following process for
each element in the array @fruits:

e Anelementof @fruits is assignedto Sfruit,

e The statement(s) surrounded by the curly-braces "{}"
are executed.

With this approach you need not know exactly how many
elements are contained in a list.

14

An alternative approach requires foreknowledge of the number
of elements and employs a "for loop":

#!/usr/local/bin/perl

@fruits = ("apples", "pears", "bananas") ;
for (Slocation = 0; Slocation < 3;
Slocation = Slocation + 1)

{
print S$fruits[$location]
}; #end for

l4

This approach implements the following process:

e Setthe value of S1ocation to 0,

e Continue to print the value of the array element
Sfruits[S$location] and increment the value of

Slocation by one, as long as $location remains less
than 3.

You can modify the second version using the knowledge that
the variable s#fruits holds the location of the last list
element. You would construct the for statement as:

for (Slocation = 0;
Slocation <= S#fruits;
Slocation = S$location + 1)

15

You might also use a "while loop" to accomplish the same
thing as in:

#!/usr/local/bin/perl

@fruits = ("apples", "pears", "bananas");
Slocation = 0;
while (Slocation < 3)

{

print $fruits[$location] ;
Slocation = Slocation + 1;
}; #end while

While loops are especially useful when a program cannot
know at the outset how many repetitions it must make. This
would be the case when reading information from a file (as
you will see later) or from a network connection, etc.

Note that the general form of the while loop provides an
unless conditional and a continue block.

16

Associative arrays

Perl provides another data structure, called a "hash" or
"associative array", to keep track of lists of things.

A hash is an array that indexes each element with a string
rather than a number. For example, an associative array
named $fruit colors can be defined as:

$fruit colors = (); #clear the hash first.
$fruit colors{'apple'} = "red";

$fruit colors{'pear'} = "green";

$fruit colors{'banana'} = "yellow";

The name of an associative array begins with a percent sign
(%), but a single element with the array is referenced with a
name beginning with a dollar sign ($). You can then print the
contents of this associative array with a foreach loop like:

foreach s$fruit (keys %$fruit colors)

{

print "color of $fruit 1is
Sfruit colors{S$fruit}\n";
}; #end foreach

Here the Perl function keys () examines the hash and finds

every index value. Within the loop, the color of each fruit is
printed directly from the array.

17

You can also assign values to a hash by using a list of
pairs of strings by using a Perl statement like:

$fruits = ('apple', "red",
'pear', "green'",
'banana', "yellow") ;

or even
$fruits = ('apple' => "red",
'pear' => "green',
'banana' => "yellow") ;

18

Subroutines and modular programming

This program has two "subroutines" that may be called from
a "main" program, or "mainline".
#!/usr/local/bin/perl

This program has two subroutines.

print "Enter your age:";

Sline = <>;
chop $line;

if (($line < 0) || ($line > 130))

{
J

else

{

&print age ($line) ;
}; #end if
exit;

&print disbelief;

sub print disbelief # sub to show doubt.

{
print "I don't believe you!\n";
}; #end sub

sub print age # sub to print a fact.

{

my Sage = $_ [0] ; # copy argument

print "You say you are S$Sage years old.\n";
}; #end sub

19

Note that the first subroutine needs no information from the
mainline to do its work.

The second one, however, is called with an "argument,” the
age value entered by the user and stored in $1ine. The
subroutine "call"

&print age($line) ;

places a pointer to $1ine in the first element of a special
array called @ , and the information in $1ine can be
copied to or modified from the subroutine as $ [0], just as
you would access the first element of any "non-special”
array.

However, rather than use $1ine itself, print age stores
the value of S1ine in a variable called Sage thatis NOT
available to any other subroutine OR to the mainline. Sage
is "isolated" from the rest of the program through the use of
the "my" statement.

Modular programs are typically easier to understand,
debug, and modify because their structure is usually clear
and data isolation keeps subroutines from changing each
other's data.

20

Note that the subroutines in the example above are
used in contexts that do not require the subroutine to
posses or return a value. A subroutine used to produce
a value that is used within a calling statement is called a
"function”. For example, the subroutine credible ()
returns the value "yes" or the value "no".

#!/usr/local/bin/perl

This program uses a function called
credible() .

print "Enter your age:";

Sline = <>;
chop $line;
if (credible($line) eq "yes")
{

print "Your age is $line.\n";
J
else
{

print "I don't believe you!\n";
}; #end if
exit;

21

sub credible # subroutine to check

credibility.
{
my Sage = $_[0] ; # copy first argument
if ((Sage < 0) || (Sage > 130))
{
return "no'";
}
else
{
return "yes'";
}; #end if

}; #end sub

The function receives $1ine as an argument, compares
it with bounding values, 0 and 130, and returns the
string "no" or the string "yes". The last value evaluated
within the function is the value that will be returned by

the function. A Perl function can return a scalar or an
array.

22

Miscellaneous built-in Perl functions

There are many built-in functions available within Perl.
See the Perl manual or tutorials for descriptions.

The open and close functions

The open function allow your program to "open" or
establish a connection to a file (or process) so that
information may be exchanged. That is, the program
may copy information from the file to program variables,
or vice versa.

For example, suppose you have file, called "fruit-colors.txt",
containing the following lines:

apple red
pear green
banana yello

You can "read" that file using a program like:

open FRUIT INFO, "< fruit-colors.txt";
while ($line = <FRUIT INFO>)

{
print $line;
}; #end while

close FRUIT INFO;
exit;

23

The "<" signifies the program intends to read from the file.
That is, the program intends to move data FROM the file

TO the program. The following program can be used to
create fruit-colors.txt:

#!/usr/local/bin/perl

$fruit colors = (); #clear the hash first.
$fruit colors{'apple'} = "red";

Sfruit colors{'pear'} = "green";

$fruit colors{'banana'} = "yellow";

open FRUIT INFO, " > fruit-colors.txt";
foreach $fruit (keys %$fruit colors)

{

print FRUIT INFO
"Sfruit $fruit colors {$fruit}\n"
}; #end foreach

close FRUIT INFO;

24

The next program opens a connection, called a "pipe", to
a process running the cat command. It then reads the

results back to the script for processing:

#!/usr/local/bin/perl
open FRUIT INFO, "/usr/bin/cat fruit-colors.txt |";
while ($line = <FRUIT INFO>)

{
print $line;
}; #end while

close FRUIT INFO;
exit;

25

The system function

The next program uses the Perl system () function to use
the UNIX shell command "cat" to print the file:

#!/usr/local/bin/perl
system("/usr/bin/cat fruit-colors.txt");
which will yield:

apple red
pear green
banana yellow

The same result may be accomplished by a slight variation
of the previous example, namely:

#!/usr/local/bin/perl
print ~/usr/bin/cat fruit-colors.txt™;

The backtick () in the print command identifies the command
to be sent to the UNIX shell for execution.

A similar and quite useful alternative is to use:
#!/usr/local/bin/perl
Sdata = ~/usr/bin/cat fruit-colors.txt";

print S$data;

which has the advantage that the program may manipulate
the results of the shell command.

26

The split function

The next example uses the split () function to separate the

each input line into parts so they can be used to assign values to
elements of a hash:

#!/usr/local/bin/perl
open FRUIT INFO, ("< fruit-colors.txt");

while ($line = <FRUIT INFO>)

{

($fruit, sScolor) = split (" ", $line);
$fruit colors{ $fruit } = S$Scolor;
}; #end while

foreach sfruit (keys %$fruit colors)

{

print
"color of $fruit is S$fruit colors{$fruit}\n";
}; #end foreach

close FRUIT INFO;
exit;

The first part of each line is stored in $fruit, and the second
partin Scolor. Those two variables are then used to make an
entry into the hash $fruit colors. The result of running this
program will be:

color of pear is green
color of banana i1s yellow
color of apple is red

27

The join function

The join () function reverses the effect of the split ()

function. It will construct a string using separate elements
and separate each element with a specified string, as in:

#!/usr/local/bin/perl

$fruit colors = (); #clear the hash.
Sfruit colors{'apple'} = "red";

$fruit colors{'pear'} = "green";

Sfruit colors{'banana'} = "yellow";

open FRUIT INFO, "> fruit-colors.txt";

foreach s$fruit (keys %$fruit colors)

{

$line = join (" ", ($fruit,
Sfruit colors{$fruit}));
print FRUIT INFO "$line\n";
}; #end foreach

close FRUIT INFO;

28

Pattern matches and regular expressions

Consider the example presented earlier which attempted
to recognize the name of a user named "Megen". The
program compared the information entered by a user
with the string "Megen". Of course, the user might enter
her name as "Megen Smith", in which case the
comparison with "Megen" fails even though the user's
name really is Megen.

One way around this is to search for the string "Megen"
within the string submitted instead of testing for equality.

You can use a Perl "pattern match" to do just that:

#!/usr/local/bin/perl
print "Enter your name: ";

Sline = <>;
chop $line;

if ($line =~ m/Megen/)

{
)

else

{
} i

exit;

print "Hi Megen!\n";

print "Hi dude or dudette.\n";

29

Here the binding operator =~ binds a "pattern match" to
a specific variable, $1ine in this case). In this context if
the user enters a string that contains the substring
"Megen" anywhere within it, she will be greeted as
"Megen". The pattern match will return either a "true" or
"false", just as does a conditional expression used within
an if statement. If the pattern match is successful the
binding operation will return a "true" logical value.

However, you really can't be sure whether Megen will
type her name with a leading capital "M". If she types
"megen" or "MEGEN SMITH", the if statement above will
not respond with "Hi Megen!" To make sure case
sensitivity doesn't confuse things, you could simply add
the letter "I" after the search string, making it:
m/Megen/i. Note also that the "m" is optional in this
context.

30

It is also possible to modify the values in a variable using
binding operators. The statement

Sline =~ s/Megen/megen/;

will "substitute"” the string "megen" for the first (leftmost)
occurrence of the string "Megen" within the variable
Sline.

$line =~ s/Megen/megen/g;
will substitute "megen" for every occurrence of "Megen".

The patterns used within "m" and "s" pattern matches
may include characters that have special meanings
within the context. For example:

period (.) represents any character; it is a single-
character wildcard,

asterisk (*) represents repetition of a character, and

plus (+) represents one or more occurrences of the
letter preceeding character or defined collection of
characters.

These pattern match strings are known as "regular
expressions".

31

Programming with Perl objects

An "object" is a special kind of data structure that
combines data and program components (e.g.,
subroutines and functions) that use that data. The
"object model" provides a way to structure programs to
make them more readable, usable, reliable, and re-
usable.

Most programming models distinguish between data and
the programs using that data, but either do not provide
data isolation, implement isolation using complex rules,
or inhibit flexibility with their isolation policies.

Most programming languages also provide constructs for
modular programming. The object model further
encourages or even dictates modular program design.

The Perl features presented to this point are adequate
for writing powerful, efficient Perl programs. These
features can all be used within the overarching object
model.

A "class" is a collection of variable definitions and
subroutines that define any object that is a member of
that class. Data values contained within an object are
called "properties" and subroutines defined within an
object are called "methods".

32

Here is a definition of a class of objects called "person" that
would normally be stored in a file called person. pm:

package person;

sub new

{

my ($class, S$color, S$weight) = @ ;

my $self = {};
$self = {'Favorite Color'} = S$color;
Sself {'Weight'} = S$Sweight;

bless Sself;
bind this object to the person class.

Sself;

}i

sub whats your favorite color

{

my s$self = S [0];
print "Your favorite color 1is
$self->{ 'Favorite Color' }.\n";

}i

sub whats your weight

{
my S$self = $ [0];
$self->{ 'Weight' };

}i

1;

33

The method "new" is a special method that can be used to
"construct" a new instantiation of the class "person"”. Three
arguments are passed to new through the @ array (as is
common with subroutine invocations), and new uses the line

my ($class, Scolor, S$Sweight) = @ ;

to assign each argument to a corresponding scalar variable
reserved for use only by this execution of the subroutine
new ().

The statement

my $self = {};

defines an empty, anonymous hash with $self, as a hard
reference to the hash. new then assigns values to the two
object properties within the new object. For example, the
statement

$self = {'Favorite Color'} = $color;

assigns the color argument to the "Favorite Color" hash
element, and stores the same hard reference into Sself.

The new () function then declares $self to be a pointer to
an object of the specified class by using the Perl bless ()
function. This is a critical step, since an object in Perl is
nothing more than "a blessed thingie." Finally, new returns
$self to the calling routine.

34

You can create a new "instance" of a person with a Perl
statement like:

S$jeff = new person ('blue', 160);
or

sSjeff

person->new ('blue', 160);

Both of these statements will define an object with a favorite
color of "blue" and a weight of "160" and store a pointer to
that object in the variable $jeff.

You can then print information from the object using
statements like:

sjeff->whats your favorite color;
or

whats your favorite color $jeff;

The next example shows a simple program to tell users their
favorite color. It uses the class definition provided above in
person.pm.

#!/usr/local/bin/perl

use person;
get the class definitions from the
person.pm file.

sjeff = person->new('blue', 160);
smichael = person-snew('red', 170);
$Scole = person->new('tangerine', 150);

35

print "Enter your name: ";

while ((Sname = <>) and
($name ne "quit\n"))
{

chop S$name;

if (Sname =~ m/jeff/i)

{

sjeff->whats your favorite color;

sweight = $jeff->whats your weight;
print "You weigh Sweight pounds.\n";

)

elsif ($name =~ m/michael/i)

{
smichael->whats your favorite color ;
sweight = $michael->whats your weight;
print "You weigh Sweight pounds.\n";

}

elsif (S$name =~ m/cole/i)

{

scole->whats your favorite color ;
sweight = $cole->whats your weight;
print "You weigh Sweight pounds.\n";

}

else

{
print "I don't know you\n";
}; #end if

print "Enter your name: ";
} #end while

exit;

36

The next version of the same program stores the object
locations in a hash, named $1ist for easy access.
#!/usr/local/bin/perl

use persorn;

Slist{'jeff'} = person->new('blue',6 160);
$list{'michael'} = person->new('red',kK 170);
$1ist{'cole'} = person->new('tangerine',150);

print "Enter your name: ";
while (($Sname = <>) and

($Sname ne "quit\n"))
{

chop S$name;

$found name = $list{ Sname };
see if there is an object
if ($found name ne "")

associated with that name.

{

$list{$name}->whats your favorite color;
Sweight=31list{$name}->whats your weight;
print "You weigh Sweight pounds.\n";

}

else

{

print "I don't know you.\n"
}; #end if

print "Enter your name: ";
} #end while

exit;

37

Some final thoughts

Perl includes many more "features" and functions. Some
consider it a veritable kitchen sink of a language in that
features seem to appear willy-nilly, with no integrating
rationale. Others consider it a godsend and frequently
discover features that meet unique needs in special
circumstances, and thereby demonstrate a "utilitarian”
rationale.

Because of this conglomeration of features, Perl programs
can be very hard to comprehend, which makes them
difficult to modify or maintain, and sometimes even difficult
to write.

Restricting your programs to a consistent structure and a
subset of the available Perl statements should help keep
your programs tractable.

Michael Grobe
July 1, 1999

38

