INF1080 – Logiske metoder for informatikk
Beskrivelse av emnet
Timeplan, pensum og eksamensdato
Kort om emnet
Dette er et emne i grunnleggende matematiske og logiske metoder. Det legges vekt p? forst?else og tilvenning av matematiske begreper og notasjon som er relevante for et studium i informatikk. Emnet ?ver opp evnen til ? tenke systematisk fra antakelser, l?se teoretiske problemer, samt formalisere og gjennomf?re matematiske resonnementer selv.
Hva l?rer du?
Etter ? ha tatt INF1080 skal du kunne:
- Gjennomf?re, forst? og formalisere matematiske resonnementer og bevis.
- Anvende og forklare forskjellen mellom ulike bevismetoder.
- Anvende grunnleggende mengdel?re og kjenne til grunnleggende notasjon og terminologi for mengder.
- Forst? grunnleggende utsagnslogikk og f?rste-ordens logikk.
- Definere logiske begreper som valuasjon, logisk ekvivalens, logisk konsekvens, gyldighet, oppfyllbarhet, falsifiserbarhet og kontradiksjon.
- Definere, anvende og regne p? grunnleggende matematiske strukturer, som mengder, tupler, relasjoner, funksjoner, formler, strenger, spr?k, grafer og regul?re uttrykk.
- Kjenne til grunnleggende egenskaper ved relasjoner og funksjoner.
- Definere mengder induktivt, definere rekursive funksjoner p? disse mengdene og bevise p?stander om disse ved hjelp av induksjonbevis.
- Kjenne til begrepene om ekvialensrelasjoner, ekvivalensklasser og partisjoner, samt gj?r rede for forhold mellom dem.
- Anvende og gj?re rede for grunnleggende grafteori og kombinatorikk.
- Bruke en logisk kalkyle for ? unders?ke logiske egenskaper.
Opptak og adgangsregulering
Studenter m? hvert semester s?ke og f? plass p? undervisningen og melde seg til eksamen i Studentweb.
Dersom du ikke allerede har studieplass ved UiO, kan du s?ke opptak til v?re studieprogrammer, eller s?ke om ? bli enkeltemnestudent.
Forkunnskaper
Obligatoriske forkunnskaper
I tillegg til generell studiekompetanse eller realkompetanse m? du dekke spesielle opptakskrav:
- Matematikk R1 eller Matematikk (S1+S2)
De spesielle opptakskravene kan ogs? dekkes med fag fra videreg?ende oppl?ring f?r Kunnskapsl?ftet, eller p? andre m?ter. Les mer om spesielle opptakskrav.
Overlappende emner
- 5 studiepoeng overlapp mot INF1800 – Logikk og beregninger (nedlagt)
- 5 studiepoeng overlapp mot MAT1030 – Diskret matematikk (nedlagt)
- 5 studiepoeng overlapp mot HUMIT1750 – Logikk og beregninger (nedlagt)
- 5 studiepoeng overlapp mot HUMIT1750MN – Logikk og beregninger (nedlagt)
- 5 studiepoeng overlapp mot SLI110
- 5 studiepoeng overlapp mot HUMIT1751 – Beregnbarhet (nedlagt)
- 5 studiepoeng overlapp mot FIL1400
Fra og med h?sten 2015: overlapper INF1080 5 studiepoeng mot MAT1140 Strukturer og argumenter
Undervisning
4 timer forelesning og 2 timer gruppeundervisning per uke. Det kreves gjennomf?ring av obligatoriske oppgaver. Les mer om krav til innlevering av oppgaver, gruppearbeid og lovlig 澳门葡京手机版app下载 under retningslinjer for obligatoriske oppgaver.
Eksamen
Dette emnet har 4 timers skriftlig digital eksamen som teller 100%. Obligatoriske oppgaver m? v?re godkjente for ? kunne g? opp til eksamen.
Hjelpemidler
Ingen hjelpemidler er tillatt.
Karakterskala
Emnet bruker karakterskala fra A til F, der A er beste karakter og F er stryk. Les mer om karakterskalaen.
Begrunnelse og klage
Adgang til ny eller utsatt eksamen
Dette emnet tilbyr b?de utsatt og ny eksamen. Les mer:
Trekk fra eksamen
Det er mulig ? ta eksamen i emnet inntil tre ganger. Dersom du trekker deg fra eksamen etter fristen eller under eksamen, bruker du et eksamensfors?k.
Annet
Det er obligatorisk oppm?te p? f?rste forelesning.
Det er obligatorisk oppm?te p? gruppe?velsene de f?rst fire ukene.