Week 13

Lecture 14: Recurrent Neural Nets, Encoder-Decoder 15 Nov.

Presentations

Recordings: here and here

Mandatory reading

Recommended reading

Jurafsky and Martin, Speech and Language Processing, 3. ed. (edition of Sept. 2021!)

  • Ch. 10 Machine Translation and Encoder-Decoder Models
    • Sec. 10.1 Language Divergences and Typology

Optional reading:

- Blackburn, S. (2002). Being good: A short introduction to ethics. OUP Oxford.

- Poppy Noor (2018), Wikipedia biases, The Guardian.

- Koenecke, A., Nam, A., Lake, E., Nudell, J., Quartey, M., Mengesha, Z., & Goel, S. (2020). Racial disparities in automated speech recognition. Proceedings of the National Academy of Sciences, 117(14), 7684-7689.

- Joshi, P., Santy, S., Budhiraja, A., Bali, K., & Choudhury, M. (2020). The state and fate of linguistic diversity and inclusion in the NLP world. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics (pp 6282–6293).

- Garg, N., Schiebinger, L., Jurafsky, D., & Zou, J. (2018). Word embeddings quantify 100 years of gender and ethnic stereotypes. Proceedings of the National Academy of Sciences , 115 (16), E3635-E3644.

Lab-session, Thursday 18 November at Sed

 

 

Published Nov. 12, 2021 4:06 PM - Last modified Nov. 22, 2021 1:42 PM