FYS5429 – Advanced machine learning and data analysis for the physical sciences

Schedule, syllabus and examination date

Course content

Advances in artificial intelligence/machine learning methods provide tools that have broad applicability in scientific research. These techniques are being applied across the diversity of research topics in modern science, leading to advances that will facilitate scientific discoveries and societal applications.

This course focuses on advanced machine learning and statistical learning methods applied to a broad variety of problems in the physical sciences and life science, from computational neuroscience to the analysis of high-energy physics experiments. Supervised and unsupervised learning methods are discussed, spanning from various deep learning methods to Bayesian modeling.

Learning outcome

After completing this course, you should:?

  • be familiar with central deep learning methods and how to use them in actual research.
  • be familiar with advanced regression algorithms.?
  • understand how to simulate complex physical processes with many degrees of freedom.
  • understand optimization techniques and their fundamental role in machine learning.?
  • be familiar with Bayesian statistics and Bayesian Machine Learning.
  • understand how to find correlations in data sets and quantify uncertainties.?
  • understand how to use Gaussian processes in the analysis of physics problems.

Admission to the course

Students admitted at UiO must?apply for courses?in Studentweb. Students enrolled in other Master's Degree Programmes can, on application, be admitted to the course if this is cleared by their own study programme.

Nordic citizens and applicants residing in the Nordic countries may?apply to take this course as a single course student.

If you are not already enrolled as a student at UiO, please see our information about?admission requirements and procedures for international applicants.

Capacity: 20 students

A good background in mathematics is needed.

Other recommended courses:

Overlapping courses

Teaching

  • Two hours of lectures per week.

The course includes two projects which are to be graded.?

Examination

  • Two projects (max. 10 pages per project) which are evaluated and graded. Each project counts?50 % of the final grade. The projects are to be delivered in Inspera. Final letter grade based on the two?projects.

When writing your exercises make sure to familiarize yourself with the rules for sources and citations. Breach of these rules may lead to suspicion of attempted cheating.

It will also be counted as one of the three attempts to sit the exam for this course if you sit the exam for one of the following courses: FYS9429 – Advanced machine learning and data analysis for the physical sciences

Examination support material

All examination support material is allowed.

Grading scale

Grades are awarded on a scale from A to F, where A is the best grade and F?is a fail. Read more about?the grading system.

Resit an examination

In this course, postponed exams are not offered for exam candidates who are ill before the exam or who become ill during the exam. A deferred submission deadline can be offered. The illness must be documented with a doctor's certificate dated no later than the ordinary submission date. You must submit the doctor's certificate to the course's contact point before the submission deadline for the home exam. New exams are not offered to candidates who withdraw or do not pass the regular exam.

More about examinations at UiO

You will find further guides and resources at the web page on examinations at UiO.

Last updated from FS (Common Student System) Jan. 27, 2025 6:54:46 PM

Facts about this course

Level
Master
Credits
10
Teaching
Spring

If the course is offered, a minimum of four students is required for ordinary lectures to take place. If less than four students participate, an exam will be given, but one should not expect ordinary teaching.

Examination
Spring
Teaching language
English