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Chapter 4

Basic principles of statistical mechanics

4.6. The partition function for a system of some kind of particles is

ZN =
[
(V −Nb)/λ

3]N exp(βaN2/V ) ,

where
λ =

√
2πh̄2/mkBT

and a and b are constants, V is the volume and N is the number of particles; all other symbols
have their usual meaning.

(a) Find the internal energy E(N,T,V ).

(b) Find the pressure P(N,T,V ).

(c) Find the entropy S(N,T,V ).

(d) Is this expression for S a valid fundamental relation, except perhaps at T = O? If not, what
is wrong, and how can ZN be appropriately corrected?
Hint: Recall Gibbs paradox.

Solution 4.6

(a) Since E =−∂ lnZ/∂β with β≡ (kBT )−1 we rewrite the partition function as

lnZN = N ln(V −Nb)−3N lnλ+βaN2/V

with λ =
√

βh̄/m. Having in mind that ∂λ/∂β = 1/2β = kBT/2 we get:

E = (3/2)NkBT −aN2/V .
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(b) Let us define the Helmholtz free energy

F =−kBT lnZN =−kBT
[
N ln(V −Nb)−3N lnλ+βaN2/V

]
.

We have

P =−
(

∂F
∂V

)
T
=

NkBT
V −Nb

+
aN2

V 2 .

(c)

S = −
(

∂F
∂T

)
V,N

= NkB

[
3
2
+ ln

V −Nb
λ3

]
.

(d) Entropy is not an additive quantity. The states created by permutation of the particles are
actually the same, so the partition function ZN should be divided by N!. In the main
approximation it will result in the expression

S = NkB

[
3
2
+ ln

v−b
λ3

]
, v≡V/N .

Another point is that the entropy does not vanish as T → 0. One cannot correct this prop-
erty within classical statistics.

4.8. Calculate the partition function and the free energy for an ideal classical gas consisting of N
molecules at temperature T contained in a vessel and subjected to a centrifugal force−Mω2z2/2,
where z is the distance of the particle from the axis of rotation and ω is the angular velocity of
rotation of the centrifuge.

Solution 4.8: When the external field is present, the integrand in the partition function con-
tains an extra factor e−βU where U ≡ −Mω2z2/2. Then one has to replace volume in the usual
expression for the partition function by

∫
d3r e−βU . This procedure yields an extra factor

1
V

∫
d3r e−βU =

2πL
πR2L

∫ R

0
zdzeβMω2z2/2

=
2

βMω2R2

∫
βMω2R2/2

0
dηeη =

2
βMω2R2

(
eβMω2R2/2−1

)
.

Thus,

Z =
2Z0

βMω2R2

(
eβMω2R2/2−1

)
, F = F0−NkBT ln

2kBT
Mω2R2

(
eMω2R2/2kBT −1

)
.

4.9. Consider an ideal monoatomic gas of N molecules in the presence of an external magnetic

field H, where each molecule behaves as an Ising spin. Calculate the free energy, energy, and
entropy and interpret the result physically. Find the limit of S at T → 0.
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Solution 4.9: The energy of the Ising spin Sin magnetic field can be written as U = −µSHH
where SH acquires the values ±S. Consequently, the partition function can be written as

Z1 = Z0 ·∑
±

e∓βµSH = 2cosh(βµSH) .

Here Z0 allows for non-magnetic degrees of freedom. Consequently,

Z = ZN
1 /N! = (ZN

0 /N!) [2cosh(βµSH)] ,

F−F0 = −(N/β) ln[2ecosh(βµSH)] ,

E−E0 = −∂Z/∂β =−NµSH tanh(βµSH) ,

(S−S0)/kB = β(E−F) = N ln[2ecosh(βµSH)]−βNµSH tanh(βµSH) .

4.12. Evaluate the contribution of a one-dimensional anharmonic oscillator having a potential
V (x) = cx2− gx3− f x4 to the heat capacity. Discuss the the dependence of the mean value of
the position x of the oscillator on the temperature T . Here c,g, f are positive constants. Usually,
g� c3/2(kBT )−1/2 and f � c2/kBT .

Solution 4.12. Since g and f are small let us try to apply perturbation theory. Since the typical
value of the displacement x̄ = (kBT/c)1/2 we obtain

gx̄3/kBT = (kBT )1/2c−3/2� 1 , f x̄4/kBT = f kBT/c2� 1 .

Thus one can expand the exponential to obtain

e−βV (x) ≈ e−βcx2 (
1−βgx3−β f x4) .

As a result,

Z = Z0

∫
∞

−∞

dxe−βV (x) ≈
√

π

βc

(
1+

3 f
4βc2

)
.

Here Z0 is the contribution of kinetic energy. Consequently,

lnZ = lnZ0 +(1/2) ln(π/c)− (1/2) lnβ+ ln(1+3 f/4βc2)

= lnZ0 +(1/2) ln(π/c)− (1/2) lnβ+3 f/4βc2 ,

E = −∂ lnZ0/∂β−∂ lnZ/∂β

= 1/2β+1/2β+3 f/4β
2c2

= kBT +3 f (kBT )2/4c2 ,

C = kB
(
1+3 f kBT/2c2) .

To estimate 〈x〉 we calculate

〈x〉 =

∫
∞

−∞
dxxe−βV (x)∫

∞

−∞
dxe−βV (x)

≈−βg
∫

∞

0 x4 dxe−βcx2∫
∞

0 dxe−βcx2 =
3
4

g
βc2 =−3

4
g x̄

β1/2c3/2 � x̄ .
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We have 〈x〉 ∝ T .

4.13. The energy of anharmonic oscillator is given by

H = p2/2m+bx2n

where n is a positive integer and n > 1. Consider a thermodynamic system consisting of a large
number of these identical noninteracting oscillators.

(a) Derive the single oscillator partition function.

(b) Calculate an average kinetic energy of an oscillator.

(c) Calculate an average potential energy of an oscillator.

(d) Show that the heat capacity is
C = (NkB/2)(1+1/n) .

Solution 4.13.

(a)

Z1 =
∫ d p

2πh̄
e−βp2/2m

∫
dxe−βbx2n

≡ Zk ·Zp ,

Zk =
m1/2

h̄(2πβ)1/2 ,

Zp =
Γ(1/2n)
n(βb)1/2n

.

where Γ(t) =
∫

∞

0 dxxt−1e−x.

(b)
Ek =−∂ lnZk/∂β = kBT/2 .

(c)
Ep =−∂ lnZp/∂β = kBT/2n .

(d) Straightforward.
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