Norwegian version of this page

EPEC - Engineering Predictability with Embodied Cognition (completed)

How can multimodal systems sense, learn, and predict future events?

EPEC.  Engineering predictability with embodied cognition. It says with letters.. Logo.

Humans are superior to computers and robots when it comes to perceiving?with eyes, ears and other senses as well as?combining perception with?learned knowledge to?choose?the best actions. This project aims to?develop?human-inspired?models of behaviour and perception?and to show that these models can?predict future actions accurately.

Our inspiration comes from embodied cognition, a concept from?psychology?proposing that our?bodies, perceptions, abilities, and form,?influences?how we think. Our?goal is to exploit?the form of various systems?to develop?predictive?reasoning models as alternatives to?traditional reactive systems. These models will be applied in interdisciplinary fields of music technology and robotics. In music, we aim to provide everyday people new ways to move within musical spaces. Our models learn about their?interactions with smartphones to?proactively assist with?their future actions. In robotics, we are developing robots with dynamic forms that can change their thinking in response to new body shapes.

A hand holding a smartphone and feet on some robotics. Photo.
Musical interaction on smartphones and robotic systems, are EPEC's application areas for new predictive models.

EPEC is directed by Professor Jim T?rresen, who also leads?the ROBIN research group in the Department of Informatics. The project employs two post doctoral fellows, Kai Olav Ellefsen and Charles Martin, and PhD researcher T?nnes Nygaard. The project also includes Associate Professor Kyrre Glette,?PhD researcher J?rgen?Nordmoen, and a number of masters students in machine learning, robotics and music technology.

Objectives

Design, implement and evaluate multimodal systems that?are able to sense, learn and predict future events.

Sub-projects

  • Internal Models: Predicting real-world effects through internal simulations
  • DyRET: Dynamic Robot for Embodied Testing
  • Interactive music systems: Computer systems for extending and enhancing musical listening, performance and collaboration.

Master Projects

Researchers from the EPEC group supervise master projects in robotics, music technology, and machine learning. Come work with us on predictive models, embodied interactive systems and new robotic interactions!

Funding

Supported by The Research Council of Norway under?FRINATEK grant agreement 240862 from 2015 to 2019.?The grant funds?1 PhD and 2 post-doc positions?(10% of prop. funded).

Publications

  • Nordmoen, J?rgen; Nygaard, T?nnes Frostad; Samuelsen, Eivind & Glette, Kyrre (2021). On Restricting Real-Valued Genotypes in Evolutionary Algorithms. In Castillo, Pedro A. & Laredo, Juan Luiz Jiménez (Ed.), Applications of Evolutionary Computation. Springer. ISSN 9783030726997. p. 3–16. doi: 10.1007/978-3-030-72699-7_1. Full text in Research Archive
  • Nygaard, T?nnes; Martin, Charles Patrick; T?rresen, Jim; Glette, Kyrre & Howard, David (2021). Real-world embodied AI through a morphologically adaptive quadruped robot. Nature Machine Intelligence. doi: 10.1038/s42256-021-00320-3. Full text in Research Archive
  • Nygaard, T?nnes; Martin, Charles Patrick; Howard, David; T?rresen, Jim & Glette, Kyrre (2021). Environmental Adaptation of Robot Morphology and Control Through Real-world Evolution. Evolutionary Computation. ISSN 1063-6560. doi: 10.1162/evco_a_00291. Full text in Research Archive
  • Nygaard, T?nnes; Howard, David & Glette, Kyrre (2020). Real world morphological evolution is feasible. In Coello, Carlos A. Coello (Eds.), GECCO '20: Proceedings of the 2020 Genetic and Evolutionary Computation Conference Companion. Association for Computing Machinery (ACM). ISSN 9781450371278. p. 1392–1394. doi: 10.1145/3377929.3398095.
  • Martin, Charles Patrick; Glette, Kyrre; Nygaard, T?nnes & T?rresen, Jim (2020). Understanding Musical Predictions With an Embodied Interface for Musical Machine Learning. Frontiers in Artificial Intelligence. 3(6). doi: 10.3389/frai.2020.00006.
  • Faitas, Andrei; Baumann, Synne Engdahl; N?ss, Torgrim Rudland; T?rresen, Jim & Martin, Charles Patrick (2019). Generating Convincing Harmony Parts with Simple Long Short-Term Memory Networks. In Queiroz, Marcelo & Sedo, Anna Xambo (Ed.), Proceedings of the International Conference on New Interfaces for Musical Expression. Universidade Federal do Rio Grande do Sul. Full text in Research Archive
  • N?ss, Torgrim Rudland & Martin, Charles Patrick (2019). A Physical Intelligent Instrument using Recurrent Neural Networks. In Queiroz, Marcelo & Sedo, Anna Xambo (Ed.), Proceedings of the International Conference on New Interfaces for Musical Expression. Universidade Federal do Rio Grande do Sul. p. 79–82. Full text in Research Archive
  • Martin, Charles Patrick & T?rresen, Jim (2019). An Interactive Musical Prediction System with Mixture Density Recurrent Neural Networks. In Queiroz, Marcelo & Sedo, Anna Xambo (Ed.), Proceedings of the International Conference on New Interfaces for Musical Expression. Universidade Federal do Rio Grande do Sul. p. 260–265. Full text in Research Archive
  • Nygaard, T?nnes Frostad; Nordmoen, J?rgen Halvorsen; Ellefsen, Kai Olav; Martin, Charles Patrick; T?rresen, Jim & Glette, Kyrre (2019). Experiences from Real-World Evolution with DyRET: Dynamic Robot for Embodied Testing, Nordic Artificial Intelligence Research and Development: Third Symposium of the Norwegian AI Society, NAIS 2019. Springer. ISSN 9783030356644. p. 58–68. doi: 10.1007/978-3-030-35664-4_6.
  • Ellefsen, Kai Olav & T?rresen, Jim (2019). Self-adapting Goals Allow Transfer of Predictive Models to New Tasks, Nordic Artificial Intelligence Research and Development: Third Symposium of the Norwegian AI Society, NAIS 2019. Springer. ISSN 9783030356644. p. 28–39. doi: 10.1007/978-3-030-35664-4_3.
  • Ellefsen, Kai Olav; Huizinga, Joost & T?rresen, Jim (2019). Guiding Neuroevolution with Structural Objectives. Evolutionary Computation. ISSN 1063-6560. 28(1), p. 115–140. doi: 10.1162/evco_a_00250. Full text in Research Archive
  • Miseikis, Justinas; Brijacak, Inka; Yahyanejad, Saeed; Glette, Kyrre; Elle, Ole Jacob & T?rresen, Jim (2019). Two-Stage Transfer Learning for Heterogeneous Robot Detection and 3D Joint Position Estimation in a 2D Camera Image Using CNN. IEEE International Conference on Robotics and Automation (ICRA). ISSN 1050-4729. 2019-May, p. 8883–8889. doi: 10.1109/ICRA.2019.8794077. Full text in Research Archive
  • Nygaard, T?nnes Frostad; Martin, Charles Patrick; T?rresen, Jim & Glette, Kyrre (2019). Self-Modifying Morphology Experiments with DyRET: Dynamic Robot for Embodied Testing. IEEE International Conference on Robotics and Automation (ICRA). ISSN 1050-4729. 2019-May, p. 9446–9452. doi: 10.1109/ICRA.2019.8793663. Full text in Research Archive
  • Weber, Aline; Alegre, Lucas N.; T?rresen, Jim & Silva, Bruno Castro da (2019). Parameterized Melody Generation with Autoencoders and Temporally-Consistent Noise. In Visi, Federico (Eds.), Music Proceedings of the International Conference on New Interfaces for Musical Expression. Universidade Federal do Rio Grande do Sul. p. 174–179. Full text in Research Archive
  • Wallace, Benedikte & Martin, Charles Patrick (2019). Comparing models for harmony prediction in an interactive audio looper. Lecture Notes in Computer Science (LNCS). ISSN 0302-9743. 11453 LNCS, p. 173–187. doi: 10.1007/978-3-030-16667-0_12.
  • Martin, Charles Patrick & Gardner, Henry (2019). Free-Improvised Rehearsal-as-Research for Musical HCI. In Holland, Simon; Mudd, Tom; Wilkie-McKenna, Katie; McPherson, Andrew & Wanderley, Marcelo M. (Ed.), New Directions in Music and Human-Computer Interaction. Springer. ISSN 9783319920689. p. 269–284. doi: 10.1007/978-3-319-92069-6_17. Full text in Research Archive
  • Nygaard, T?nnes Frostad; Martin, Charles Patrick; T?rresen, Jim & Glette, Kyrre (2019). Evolving Robots on Easy Mode: Towards a Variable Complexity Controller for Quadrupeds. Lecture Notes in Computer Science (LNCS). ISSN 0302-9743. 11454 LNCS, p. 616–632. doi: 10.1007/978-3-030-16692-2_41. Full text in Research Archive
  • Nordmoen, J?rgen Halvorsen; Nygaard, T?nnes Frostad; Ellefsen, Kai Olav & Glette, Kyrre (2019). Evolved embodied phase coordination enables robust quadruped robot locomotion. In López-Ibá?ez, Manuel (Eds.), GECCO '19: Proceedings of the Genetic and Evolutionary Computation Conference. Association for Computing Machinery (ACM). ISSN 9781450361118. p. 133–141. doi: 10.1145/3321707.3321762. Full text in Research Archive
  • Teigen, Bj?rn Ivar; Ellefsen, Kai Olav & T?rresen, Jim (2019). A Categorization of Reinforcement Learning Exploration Techniques Which Facilitates Combination of Different Methods, Proceedings of the 9th Joint IEEE International Conference on Development and Learning and on Epigenetic Robotics. IEEE (Institute of Electrical and Electronics Engineers). ISSN 9781538681299. p. 189–194. doi: 10.1109/DEVLRN.2019.8850685.
  • Garcia, Rafael; Falcao, Alexandre Xavier; Telea, Alexandru C.; Silva, Bruno Castro da; T?rresen, Jim & Comba, Joao Luiz Dihl (2019). A Methodology for Neural Network Architectural Tuning Using Activation Occurrence Maps. In Jayne, Chrisina & Somogyvári, Zoltán (Ed.), 2019 International Joint Conference on Neural Networks (IJCNN). IEEE (Institute of Electrical and Electronics Engineers). ISSN 9781728119854. doi: 10.1109/IJCNN.2019.8852223.
  • Martin, Charles Patrick & T?rresen, Jim (2019). Data Driven Analysis of Tiny Touchscreen Performance with MicroJam. Computer Music Journal. ISSN 0148-9267. 43(4). Full text in Research Archive
  • Becker, Artur; Herrebr?den, Henrik; Sanchez, Victor Evaristo Gonzalez; Nymoen, Kristian; Freitas, Carla Maria Dal Sasso & T?rresen, Jim [Show all 7 contributors for this article] (2019). Functional Data Analysis of Rowing Technique Using Motion Capture Data. In Coleman, Grisha (Eds.), Proceedings of the 6th International Conference on Movement and Computing. ACM Publications. ISSN 9781450376549. doi: 10.1145/3347122.3347135.
  • Weber, Aline; Martin, Charles Patrick; T?rresen, Jim & Silva, Bruno Castro da (2019). Identifying Reusable Early-Life Options, Proceedings of the 9th Joint IEEE International Conference on Development and Learning and on Epigenetic Robotics. IEEE (Institute of Electrical and Electronics Engineers). ISSN 9781538681299. doi: 10.1109/DEVLRN.2019.8850725.
  • Miseikis, Justinas; Brijacak, Inka; Yahyanejad, Saeed; Glette, Kyrre; Elle, Ole Jacob & T?rresen, Jim (2018). Transfer Learning for Unseen Robot Detection and Joint Estimation on a Multi-Objective Convolutional Neural Network, 2018 IEEE International Conference on Intelligence and Safety for Robotics (ISR 2018). IEEE (Institute of Electrical and Electronics Engineers). ISSN 9781538655481. p. 337–342. doi: 10.1109/IISR.2018.8535937. Full text in Research Archive
  • Nordmoen, J?rgen Halvorsen; Samuelsen, Eivind; Ellefsen, Kai Olav & Glette, Kyrre (2018). Dynamic mutation in MAP-Elites for robotic repertoire generation, The 2018 Conference on Artificial Life. MIT Press. ISSN 9780262355766. p. 598–605. doi: 10.1162/isal_a_00110. Full text in Research Archive
  • Nordmoen, J?rgen Halvorsen; Ellefsen, Kai Olav & Glette, Kyrre (2018). Combining MAP-Elites and Incremental Evolution to Generate Gaits for a Mammalian Quadruped Robot. Lecture Notes in Computer Science (LNCS). ISSN 0302-9743. 10784 LNCS, p. 719–733. doi: 10.1007/978-3-319-77538-8_48. Full text in Research Archive
  • Garcia, Rafael; Telea, Alexandru C; Silva, Bruno Castro da; T?rresen, Jim & Comba, Joao Luiz Dihl (2018). A task-and-technique centered survey on visual analytics for deep learning model engineering. Computers & graphics. ISSN 0097-8493. 77, p. 30–49. doi: 10.1016/j.cag.2018.09.018.
  • Martin, Charles Patrick & T?rresen, Jim (2018). RoboJam: A musical mixture density network for collaborative touchscreen interaction. Lecture Notes in Computer Science (LNCS). ISSN 0302-9743. 10783 LNCS, p. 161–176. doi: 10.1007/978-3-319-77583-8_11. Full text in Research Archive
  • Miseikis, Justinas; Knobelreiter, Patrick; Brijacak, Inka; Yahyanejad, Saeed; Glette, Kyrre & Elle, Ole Jacob [Show all 7 contributors for this article] (2018). Robot localisation and 3D position estimation using a free-moving camera and cascaded convolutional neural networks, 2018 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM 2018). IEEE (Institute of Electrical and Electronics Engineers). ISSN 9781538618554. p. 181–187. doi: 10.1109/AIM.2018.8452236. Full text in Research Archive
  • Miseikis, Justinas; Brijacak, Inka; Yahyanejad, Saeed; Glette, Kyrre; Elle, Ole Jacob & T?rresen, Jim (2018). Multi-Objective Convolutional Neural Networks for Robot Localisation and 3D Position Estimation in 2D Camera Images, 2018 15th International Conference on Ubiquitous Robots (UR 2018). IEEE (Institute of Electrical and Electronics Engineers). ISSN 9781538663356. p. 597–603. doi: 10.1109/URAI.2018.8441813. Full text in Research Archive

View all works in NVA

View all works in NVA

  • Glette, Kyrre (2020). Evolutionary algorithms for intelligent robots.
  • Nordmoen, J?rgen Halvorsen & Fadelli, Ingrid (2019). A new method to enable robust locomotion in a quadruped robot. [Internet]. TechXplore.
  • Miseikis, Justinas; Brijacak, Inka; Yahyanejad, Saeed; Glette, Kyrre; Elle, Ole Jacob & T?rresen, Jim (2019). Two-Stage Transfer Learning for Heterogeneous Robot Detection and 3D Joint Position Estimation in a 2D Camera Image Using CNN.
  • Ellefsen, Kai Olav; Huizinga, Joost & T?rresen, Jim (2019). Guiding Neuroevolution with Structural Objectives.
  • Nygaard, T?nnes Frostad; Martin, Charles Patrick; T?rresen, Jim & Glette, Kyrre (2019). Self-Modifying Morphology Experiments with DyRET: Dynamic Robot for Embodied Testing.
  • Nygaard, T?nnes Frostad; Nordmoen, J?rgen Halvorsen; Martin, Charles Patrick; T?rresen, Jim & Glette, Kyrre (2019). Lessons Learned from Real-World Experiments with DyRET: the Dynamic Robot for Embodied Testing.
  • Glette, Kyrre (2019). Kunstig intelligens for tilpasningsdyktige roboter.
  • T?rresen, Jim (2019). Intelligent and Adaptive Robots in Real-World Environment.
  • T?rresen, Jim (2019). Future and Ethical Perspectives of Robotics and AI.
  • T?rresen, Jim (2019). Sensing Human State with Application in Older People Care and Mental Health Treatment.
  • Miura, Jun & T?rresen, Jim (2019). Intelligent Robot Technologies for Care and Lifestyle Support.
  • Comba, Joao Luiz Dihl & T?rresen, Jim (2019). Visual Data Analysis of Unstructured and Big Data.
  • Rohlfing, Katharina J. & T?rresen, Jim (2019). Explainability: an interactive view.
  • T?rresen, Jim; Glette, Kyrre & Ellefsen, Kai Olav (2019). Intelligent, Adaptive Robots in Real-World Scenarios.
  • T?rresen, Jim; Glette, Kyrre & Ellefsen, Kai Olav (2019). Adaptive Robot Body and Control for Real-World Environments.
  • Ellefsen, Kai Olav (2019). Hva Kan Roboter L?re av Biologisk Liv?
  • Becker, Artur; Herrebr?den, Henrik; Sanchez, Victor Evaristo Gonzalez; Nymoen, Kristian; Freitas, Carla Maria Dal Sasso & T?rresen, Jim [Show all 7 contributors for this article] (2019). Functional Data Analysis of Rowing Technique Using Motion Capture Data.
  • T?rresen, Jim (2019). Intelligent Robots and Systems in Real-World Environment.
  • T?rresen, Jim (2019). Design and Control of Robots for Real-World Environment.
  • Nygaard, T?nnes Frostad & Glette, Kyrre (2019). Her er universitetets mest avanserte, selvl?rende robot. [Journal]. Apollon.
  • Ellefsen, Kai Olav & T?rresen, Jim (2019). Evolutionary Robotics: Automatic design of robot bodies and control.
  • T?rresen, Jim (2019). Supporting Older People with Robots for Independent Living.
  • T?rresen, Jim (2019). Hva er kunstig intelligens?
  • T?rresen, Jim (2019). Artificial Intelligence and Applications in Health and Care.
  • T?rresen, Jim (2019). Kunstig intelligens – hvem, hva og hvor. (Eng. Artificial Intelligence – who, what and where).
  • Martin, Charles Patrick & T?rresen, Jim (2019). An Interactive Musical Prediction System with Mixture Density Recurrent Neural Networks.
  • N?ss, Torgrim Rudland; T?rresen, Jim & Martin, Charles Patrick (2019). A Physical Intelligent Instrument using Recurrent Neural Networks.
  • Faitas, Andrei; Baumann, Synne Engdahl; Torresen, Jim & Martin, Charles Patrick (2019). Generating Convincing Harmony Parts with Simple Long Short-Term Memory Networks.
  • Martin, Charles Patrick & Torresen, Jim (2019). An Interactive Music Prediction System with Mixture Density Recurrent Neural Networks.
  • Martin, Charles Patrick; N?ss, Torgrim Rudland; Faitas, Andrei & Baumann, Synne Engdahl (2019). Session on Musical Prediction and Generation with Deep Learning.
  • Glette, Kyrre; Nygaard, T?nnes Frostad & Vogt, Yngve (2019). Her er universitetets nest selvl?rende robot. [Journal]. Teknisk ukeblad.
  • Ellefsen, Kai Olav & T?rresen, Jim (2019). Self-Adapting Goals Allow Transfer of Predictive Models to New Tasks.
  • Teigen, Bj?rn Ivar; Ellefsen, Kai Olav & T?rresen, Jim (2019). A Categorization of Reinforcement Learning Exploration Techniques Which Facilitates Combination of Different Methods.
  • Nordmoen, J?rgen Halvorsen; Nygaard, T?nnes Frostad; Ellefsen, Kai Olav & Glette, Kyrre (2019). Evolved embodied phase coordination enables robust quadruped robot locomotion.
  • Nygaard, T?nnes Frostad; Nordmoen, J?rgen Halvorsen; Ellefsen, Kai Olav; Martin, Charles Patrick; T?rresen, Jim & Glette, Kyrre (2019). Experiences from Real-World Evolution with DyRET: Dynamic Robot for Embodied Testing.
  • T?rresen, Jim (2019). Making Robots Adaptive and Preferable to Humans.
  • Glette, Kyrre (2019). Kunstig intelligens for tilpasningsdyktige roboter.
  • T?rresen, Jim (2018). Intelligent Systems for Medical and Healthcare Applications.
  • Nygaard, T?nnes Frostad & Dormehl, Luke (2018). This robot taught itself how to walk and it’s as clumsy as a newborn deer. [Journal]. Digital Trends.
  • Nygaard, T?nnes Frostad & Gonzales, Robbie (2018). How a Flock of Drones Developed Collective Intelligence. [Journal]. Wired Science.
  • Nygaard, T?nnes Frostad & Papadopoulos, Loukia (2018). New Evolving Robot Teaches Itself to Walk Through Trial and Error. [Journal]. Interesting Engineering.
  • T?rresen, Jim (2018). Remote Lab and Applications for High Performance and Embedded Architectures.
  • Nygaard, T?nnes Frostad & Simon, Matt (2018). The shape-shifting robot that evolves by falling down. [Journal]. Wired Science.
  • Moen, Hans Jonas Fossum; Glette, Kyrre; Nygaard, T?nnes Frostad & Johnsrud, Mette (2018). Fem felt der vi f?r en f?rerl?s fremtid. [Internet]. Titan.uio.no.
  • Martin, Charles Patrick (2018). Deep Predictive Models in Interactive Music.
  • Glette, Kyrre (2018). Automatic design of bodies and behaviors for real-world robots.
  • Martin, Charles Patrick; Glette, Kyrre; Nygaard, T?nnes Frostad & T?rresen, Jim (2018). Self-Awareness in a Cyber-Physical Predictive Musical Interface.
  • Nygaard, T?nnes Frostad; Martin, Charles Patrick; T?rresen, Jim & Glette, Kyrre (2018). Exploring Mechanically Self-Reconfiguring Robots for Autonomous Design.
  • Martin, Charles Patrick (2018). Predictive Music Systems for Interactive Performance.
  • Martin, Charles Patrick; Glette, Kyrre & T?rresen, Jim (2018). Creative Prediction with Neural Networks.
  • Ceja, Enrique Alejandro Garcia; Ellefsen, Kai Olav; Martin, Charles Patrick & T?rresen, Jim (2018). Prediction, Interaction, and User Behaviour.
  • T?rresen, Jim (2018). N?r etikk betyr alt.
  • T?rresen, Jim (2018). Kunstig intelligens – hvem, hva og hvor.
  • Stoica, Adrian & T?rresen, Jim (2018). Robots on the Moon, and their Role in a Future Lunar Economy.
  • T?rresen, Jim (2018). Ethical Robots and Autonomous Systems.
  • Nygaard, T?nnes Frostad; S?yseth, Vegard D?nnem; Nordmoen, J?rgen Halvorsen & Glette, Kyrre (2018). Stand with the DyRET robot.
  • Nygaard, T?nnes Frostad (2018). Real-World Evolution Adapts Robot Morphology and Control to Hardware Limitations.
  • Martin, Charles Patrick & T?rresen, Jim (2018). Predictive Musical Interaction with MDRNNs.
  • T?rresen, Jim (2018). Frelsende eller fatalt? [Journal]. 澳门葡京手机版app下载setikk.
  • Martin, Charles Patrick (2018). Creative Prediction with Neural Networks.
  • Ellefsen, Kai Olav (2018). Evolusjon?r Robotikk: Automatisk design og kontroll av roboter.
  • Ellefsen, Kai Olav & T?rresen, Jim (2018). Evolutionary Robotics: Automatic design of robot controllers and bodies.
  • S?yseth, Vegard D?nnem; Nygaard, T?nnes Frostad; Martin, Charles Patrick; Uddin, Md Zia & Ellefsen, Kai Olav (2018). ROBIN-Stand ved Cutting Edge 2018.
  • T?rresen, Jim (2018). Artificial Intelligence Applied for Real-World Systems.
  • T?rresen, Jim (2018). Artificial Intelligence – State-of-the-art.
  • N?ss, Torgrim Rudland; Martin, Charles Patrick & T?rresen, Jim (2019). A Physical Intelligent Instrument using Recurrent Neural Networks. Universitetet i Oslo.